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Cancer develops, progresses and responds to therapies through restricted

perturbation of the protein–protein interaction networkw
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The products of genes mutated or differentially expressed in cancer tend to occupy central positions

within the network of protein–protein interactions, or the interactome network. Integration of different

types of gene and protein relationships has considerably increased the understanding of the mechanisms

of carcinogenesis, while also enhancing the applicability of expression signatures. In this scenario,

however, it remains unknown how cancer develops, progresses and responds to therapies in a potentially

controlled manner at the systems level. Here, by applying the concepts of load transfer and cascading

failures in power grids, we examine the impact and transmission of cancer-related gene expression

changes in the interactome network. Relative to random perturbations, this study reveals topological

robustness associated with all cancer conditions. In addition, experimental perturbation of a central

cancer node, which consists of over-expression of the a-synuclein (SNCA) protein in MCF7 breast cancer

cells, also reveals robustness. Conversely, a search for proteins with an opposite topological impact

identifies the autophagy pathway. Mechanistically, the existence of smaller shortest paths among

cancer-related proteins appears to be a topological feature that partially contributes to the restricted

perturbation of the network. Together, the results of this study suggest that cancer develops, progresses

and responds to therapies following controlled, restricted perturbation of the interactome network.

1. Introduction

Understanding of the genetic determinants of cancer develop-

ment and progression has been greatly enhanced in recent

years. Sets of genes (also called ‘‘signatures’’) whose differen-

tial expression or profiles have prognostic or predictive

(in terms of prediction of drug-response) values have been

identified for almost every type of cancer.1 In some cases,

several signatures have proved to be useful in independent

evaluations, although, intriguingly, their overlap in gene

identities was minimal.2,3 Then, integrative approaches using

different types of gene and protein relationships have demon-

strated the existence of biological convergence among appar-

ently disparate gene sets.4–10 Moreover, integrating data from
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Insight, innovation, integration

The products of genes differentially expressed in cancer

tend to occupy central positions in the network of protein–

protein interactions, or the interactome network. It is

unknown, however, whether the gene expression changes

that characterize cancer are controlled in any way in this

network, which might enable the robustness of the disease.

To evaluate this, we integrated interactome and expression

data from consecutive cancer stages, and from profiles that

describe prognostic and predictive differences, and developed

an analysis of cascading failures for the transmission of

expression changes in the network. This study revealed

topological robustness linked to all cancer conditions and,

notably, autophagy was identified as an opposite state, which

might support its targeting in therapy.
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the network of known protein–protein interactions (hereafter

‘‘interactome network’’) has been shown to improve the repro-

ducibility and accuracy of prognostic signatures.11–14 Together,

these studies have considerably improved the mechanistic

knowledge and applicability of cancer expression profiles.

However, in this scenario, the network topological patterns

linked to the dynamic molecular alterations that characterize

cancer development and progression, and treatment response,

remain unknown. Identifying these patterns or properties, if

any, might enhance the systems-level understanding of carcino-

genesis and identify potential targeted therapeutic strategies.

Cancer develops and progresses through the successive

acquisition of genetic and genomic alterations. Downstream

of these alterations are expression changes in many genes at

each stage of the disease. These expression changes—at least

those that participate as ‘‘drivers’’15—may cause a partial

rewiring of complex cellular networks. Ultimately, this rewir-

ing would allow the cancer cell to acquire an unexpected

function or cause it to be insensitive to defined inhibitory

signals.16 Recently, systems-level studies have revealed mole-

cular rewiring and increased signaling entropy in cancer,17–19

and that genes linked to driver modules have robust predictive

power.14 Here, we hypothesized that the features of dynamism

and robustness intrinsic to cancer should also be present at

different biological levels and, in particular, evident within the

topology of the interactome network. To assess this hypothesis

we analyzed the impact of cancer-related expression changes—

including cancer development, progression, response to treat-

ments, and targeted perturbation—in the interactome network

using the concept of ‘‘cascading failures’’.20 A similar concept

was previously applied to the study of metabolic networks,

which revealed robustness.21 Here, the network topological

impact of protein expression changes that characterize differ-

ent cancer conditions is modeled in an analogous way to the

trigger of cascading failures in power grids. The results of

these analyses associate robustness with cancer and identify

autophagy as an opposite condition.

2. Materials and methods

2.1 The interactome network

Release #7 of the Human Protein Reference Database

(HPRD),22 which contains 9461 proteins and 37 081 inter-

actions, and release 09/29/2011 of the IntAct database,23 which

contains 8292 proteins and 33794 interactions, were used to

build the interactome networks. Thus, the interactome sets were

mostly represented by experimentally demonstrated inter-

actions compiled through literature curation. The corresponding

main components were used for subsequent analyses, excluding

proteins with no assigned Entrez identifier and homodimers.

2.2 Gene expression data

Raw breast cancer expression data were downloaded from the

Gene Expression Omnibus references GSE16873 (normal

breast tissue (N) and atypical ductal hyperplasia (ADH) com-

parison24), GSE14548 (N and ductal carcinoma in situ (DCIS)

comparison25), GSE3744 (N and invasive ductal carcinoma

(IDC) comparison26), GSE3893 (DCI and IDC comparison27),

GSE2741 (IDC and metastasis (M) comparison28), and

GSE7327 (MCF7 xenografts29). Data were normalized and

the significance analysis of microarrays (SAM) algorithm30

was used to identify differentially expressed probes at a r5%

false discovery rate (FDR).31 Raw colorectal cancer expression

data were downloaded from the GSE4183 reference32 and

differentially expressed probes identified by a >|2-fold| expres-

sion change. Data from the study of MCF7-SNCA versus

parental MCF7 cells were similarly processed and analyzed,

and have been deposited at GSE31180. Gene expression differ-

ences were evaluated for all microarray probes (without collap-

sing them per gene name) and the extreme difference was

selected for subsequent analyses (randomly chosen gene sets

were similarly processed). The Gene Set Enrichment Analysis

(GSEA) tool was used with default values for all parameters.33

2.3 SNCA cloning and expression

A full-length open reading frame of SNCA was obtained

through reverse transcription polymerase chain reactions

using cDNAs derived from healthy lymphocytes and sub-

sequently cloned into the Gateway pDONR201 (Invitrogen)

vector. The clone was 50-sequenced so that the SNCA sequence

was confirmed and did not show changes relative to publicly

available sequence information. The SNCA sequence was then

transferred to the pcDNA t6.2/N-EmGFP-DEST (Invitrogen)

vector for expression and blasticidin-based selection in MCF7

cells. Two clones of MCF7-SNCA were then isolated through

minimal dilution of cells. As controls, parental MCF7 cells

were transfected with an empty pcDNA t6.2/N-EmGFP-

DEST (Invitrogen) vector and two clones selected as described

above. Cells were routinely cultured and maintained in

Roswell Park Memorial Institute medium containing 10%

fetal bovine serum and 2 mM glutamine. Western blots were

performed following standard protocols. SNCA expression

was detected with the Ab-1 (123–140) antibody (Calbiochem)

and TUBA (a-tubulin) expression with the DM1A + DM1B

antibody (Abcam). RNA samples were double-extracted

using TRIzol Reagent (Invitrogen) and QIAGEN RNeasy

(QIAGEN), and quality evaluated in Agilent Bioanalyzer

2100. RNAs were amplified using the Ribo-SPIA system

(NuGEN Technologies) and subsequently hybridized on the

microarray platform Affymetrix U133 Plus 2.0.

2.4 Cascading failures enrichment analysis

With V the complete set of nodes in the main component of

the interactome network, B C V, j A V\B, a and tj be fixed

parameters, the number of failures on B caused by j is noted as

cf Bðj; a; tÞ 2 ½0; jBj�

and the normalized value as

cfBðj; a; tÞ ¼ cfBðj; a; tÞ
jBj 2 ½0; 1�

Next, with A another subset of nodes, the failure coefficient of

set A on B is defined as follows:

cfBðA; a; tÞ ¼
P

j2A cfBðj; a; tÞ
jAj ¼

P
j2A cfBðj; a; tÞ
jAjjBj 2 ½0; 1�
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If B = V, the coefficient reflects failures on the main compo-

nent of the network, being computed as follows:

cf ðA; a; tÞ ¼
P

j2A cf ðj; a; tÞ
jAjðjV j � 1Þ

Therefore, the failure coefficient shows the proportion of

nodes that have failed relative to the total nodes in the main

network component and ranges from 0 (all nodes failed) to 1

(none failed). To identify nodes that cause more failures than

randomly expected, let Xto be the number of total failures for

t = to and P(Xt Z x|k) the probability of causing Zx

failures, we compute P(Xtmax
Z xtmax

|k) where t = tmax

represents the maximum difference between the observed

and randomly generated values. The cluster coefficient was

calculated as described elsewhere and randomly chosen

nodes were adjusted by selecting values within six windows

(0.00 – o0.01; 0.01 – o0.10; 0.10 – o0.20; 0.20 – o 0.40;

0.40 – o 0.99; and 0.99 – r 1.00).

3. Results

3.1 Analysis of cascading failures in the interactome network

Gene expression differences that characterize the consecutive

stages of breast cancer development and progression were inte-

grated into the interactome network (Fig. 1 and File S1, ESIw).
Two interactome datasets were examined in this study, one

corresponding to the HPRD22 and the other to the IntAct

database.23 With this framework, an analysis of cascading fail-

ures20 was applied to examine the topological network dynamics

and robustness. In this analytical framework, the initial load Li

of a given node j (i.e. protein j in the interactome network) is

defined as a function of the product of its degree kj (i.e. number

of interactors of j) and the sum of the degrees of its neighbors, Gj:

Lj ¼ kj
X
i2Gj

ki

0
@

1
A

a

Therefore, the load function includes a tunable parameter

a A R with which the relationship between load and degree

can be modified. Thus, for small values of a the relationship

between Lj and kj is roughly concave (i.e. line segments lie

below the curve) monotone increasing, while for a values of

around 0.6 it is near linear, and for a values close to 1.0 it is

roughly convex monotone increasing (Fig. 2).

Next, the concept of node capacity is used to examine

failures: thus, the capacity of node i (Ci) is defined as the

maximum load it can handle prior to failure. At this point we

introduce a novel parameter based on the rank of expression

values for each gene. We assume that a gene with a broader

expression rank (i.e. a gene showing relatively low and high

expression values across samples) should represent a node with

a higher capacity. In other words, assuming a direct correla-

tion between the gene and the corresponding protein expres-

sion, if the expression of a given gene varies considerably

across samples we infer that the cell tolerates higher variability

of the corresponding protein level prior to transferring its

associated biological information to its interaction partners.

While expression variability may also reflect different cell type

contents across samples, the results of this study represent the

analysis of several datasets across diverse cancer conditions,

protein sets, and controls (detailed in subsequent sections).

Thus, on the basis of the assumptions described above, node

capacity is defined as follows:

Ci = tiLi

where

ti = 1 + tri

t A R and ri is the expression rank of gene i and computed as:

ri ¼
maxP2Pi ðRPÞ
maxP2PðRPÞ

2 ½0; 1�

where maxPAPi (RP) is the maximum difference between the

maximum and the minimum expression values (RP) of the

probe set P of gene i, and maxPAP (RP) the maximum

difference among all genes examined in a given microarray

platform and dataset (using normal cancer samples). The ri
and kj values were weakly correlated in the expression datasets

used in this study: Kendall’s t coefficients ranging from 0.03 to

0.09 (Fig. 3a illustrates the relationship between ri and kj, and

the distribution of values of ri in a given dataset). The

interaction partners tend to share similar expression ranks

(empirical p o 0.05, Fig. 3b), which is expected based on the

well-known associations with analogous genetic, molecular or

functional relationships.34,35

Next, the load increase of node i due to failure of a first-

degree neighbor j is computed as follows:

DLij ¼ Lj
LiP

n2Gj
Ln

Fig. 1 Strategy for studying the interactome network topology asso-

ciated with cancer. Differentially expressed genes at consecutive stages

of breast cancer are integrated into the interactome network and

subsequently examined for their associated topological patterns. In

this framework, the link to cancer prognostic and predictive profiles,

and to a targeted node perturbation, is also evaluated.

Fig. 2 Relationship between node load and degree. The graphs show

the relationship between load (Lj) and degree (kj) for different values of

a (0.1, 0.6 and 1.0) and for all nodes in the main component of the

interactome network.
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and, therefore, the final load of i is defined as:

Li + DLij

In summary, using these rules and a defined set of nodes

(in our case, proteins encoded by differentially expressed genes

during a given cancer transition or in response to a treatment

or a perturbation) the network topological study examines the

patterns and enrichments of cascading failures. Importantly,

note that failures are computed when each node is selected

individually (not simultaneously with other nodes) and, there-

fore, there is no influence on the results of the path length

between cancer-related nodes.

Together, the study includes four main steps: (1) a defined

cancer-related protein set is identified in the interactome net-

work; (2) for each selected protein or node, a precomputed

load is proportionally transferred to its first-degree neighbors;

(3) a neighbor may fail if its increase in load is higher than its

capacity, which in turn depends on the corresponding gene

expression rank in a given dataset (note that by this step

cancer proteins have been identified and their load transferred

to their interaction partners, so their capacity is not influen-

cing the results); and (4) cascading failures may occur until a

steady-state is reached. Thus, analogously to the concepts of

electricity load, capacity limit and cascading failures in power

grids, this study examines the impact and transmission of

cancer-related alterations (e.g. gene expression changes in

cancer relative to normal cells) in the interactome network.

In this framework, if the expression change of a given gene

exceeds a threshold (i.e. capacity, which depends on para-

meters of the gene expression rank and the number of protein

interactions), we assume that the corresponding network node

fails and transfers biological information to its neighbors. This

transfer is then propagated through the network (i.e. cascading

failures) until no other node fails (i.e. their load increase does

not exceed their capacity). In this scenario, topological robustness

is revealed when fewer node failures are observed than random

perturbations.

The results are initially presented for three values of a
according to the observed consequences of selecting nodes

with the lowest and the highest load values: top left panel of

Fig. 4a illustrates the relationship between a ‘‘failure coeffi-

cient’’—which represents the proportion of nodes that have

failed relative to the total nodes in the main component of the

interactome network, see Methods—and the parameter a,
using the N-DCIS expression dataset (similar results were

obtained using other datasets, not shown). Nodes with low

load confer network fragility at low values of a (as in this

setting they have a relatively higher load, see also Fig. 2), while

nodes with high load confer network fragility at relatively high

values of a. The three remaining panels of Fig. 4a illustrate the

relationship between the failure coefficient and the parameter t
for the three selected values of a. The exact relationship

between the load and the parameter a was then computed

for each expression dataset by including information on the

gene expression ranks. On the other hand, Fig. 4b shows

the relationship between the maximum number of iterations

of the model relative to t necessary to reach a steady state

(in which no additional failures occur); for example, for all

nodes in the main network component and with t = 1, the

maximum number of iterations required to reach the steady

state is approximately 30.

3.2 Protein sets linked to cancer reveal topological robustness

To date, the impact or topological features, if any, in the

interactome network of the expression changes that characterize

cancer has remained unknown. To address this question, for

each set of differentially expressed genes across breast cancer

stages (File S1, ESIw), we applied a network analysis as defined

above and examined the number of node failures relative to

random. As random, 500 equivalent sets (i.e. sets with an

Fig. 3 Relationship between node expression rank and degree. (A) Left panel, relationship between expression rank (ri) and degree (kj) for all

nodes in the main component of the interactome network. The results correspond to the N-IDC transition and are representative of all cancer

stages. Right panel, distribution of the number of genes across the values of ri in the same dataset. (B) Having divided ri into tertiles (low, medium

and high), random permutations of protein names (keeping the original degree distribution) reveals significant (empirical po 0.05) enrichment for

similar expression ranks among interacting proteins (observed).
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identical number of nodes and, because of a known degree bias

of cancer-associated proteins,36–38 case-paired for node degree

and local cluster coefficient values) of randomly chosen nodes

were used. Thus, the sets of proteins that characterize different

cancer conditions tend to cause a lower number of failures

than randomly expected (empirical p o 0.05); Fig. 5a shows

results using the HPRD dataset, but similar conclusions were

obtained using the IntAct dataset (File S2, ESIw). The results

were also similar for different values of a, which suggests

that this parameter does not have a major influence on the

conclusions. Without the adjustment of the random sets for

degree and local cluster coefficient values, significant (empiri-

cal p o 0.05) differences were also observed, although with a

lower magnitude (Fig. 5b). Additionally, the removal of over-

lapping proteins between sets that define cancer stages showed

similar results (not shown). Finally, the observation of strong

differences in N-DCIS and N-IDC relative to random, despite

noise in DCI-IDC and IDC-M, may simply reflect disparities

in the size of the corresponding protein sets (File S1, ESIw).
Since topological robustness might be linked to any

functionally coherent protein set and may not necessarily be

a specific feature of cancer conditions, the consequences

of altering each of the Kyoto Encyclopedia of Genes and

Genomes (KEGG)39 annotated pathways were evaluated.

While many (if not all) pathways can be associated with

carcinogenesis through evidence from the literature, most of

the KEGG sets did not show similar topological robustness to

the cancer sets (File S3, ESIw shows results for 136 KEGG sets

using an intermediate a value and the N-IDC comparison). On

the other hand, 35 KEGG sets revealed a similar pattern to the

cancer sets; nonetheless, all of these sets represented pathways

that can be clearly linked to carcinogenesis, with ‘‘Cell Cycle’’

and ‘‘MAPK signaling pathway’’ showing the strongest differ-

ences relative to random (File S4, ESIw). The 136 sets that

showed a dissimilar pattern to the cancer sets included those

involved in metabolism and biosynthesis, as well as pathways

inversely related to carcinogenesis: in particular, several sets

linked to the immune response.40 Analysis of protein sets

corresponding to the Gene Ontology term annotations

‘‘Immune Response’’ and ‘‘Intracellular Protein Kinase Cascade’’

showed similar results to those obtained for the KEGG sets

(File S4, ESIw). Finally, to assess the impact of functionally

coherent protein sets related to cancer conditions, all known

kinases were subdivided according to whether they were

differentially expressed in a given cancer transition (N-IDC),

and then failures examined as above. Both sets (i.e. differen-

tially and non-differentially expressed kinases) caused fewer

failures than randomly expected (File S5, ESIw), which,

together with the results from the KEGG sets, suggests that

the observed topological robustness is a common feature of

proteins linked to cancer, not only through expression changes.

To further evaluate the network topological robustness

associated with cancer, another tumorigenic process was

examined. Differentially expressed genes between normal

colorectal tissue and adenomas, and carcinomas, were identi-

fied using a public dataset,32 their products selected and the

node failures examined as defined above. Thus, protein sets

that characterize colorectal cancer conditions also suggested

topological robustness (File S6, ESIw). These results are con-

sistent with those of the breast cancer, KEGG and kinases sets

and, overall, support the hypothesis that cancer associates

with topological robustness in the interactome network.

3.3 Cancer progression is associated with topological

robustness

Complementary to computing failures in the global network,

we investigated the dynamic pattern of failures across the

neighbors (defined by shortest path intervals) of the cancer-

related nodes. The cancer proteins showed a lower impact at

almost all intervals, with B50% of nodes deactivated at the

first-degree neighbors (Fig. 5c, left panel shows results for a

representative case). Thus, the proportion of failures followed

a near-uniform distribution until 9–11 intervals, at which

point it dropped sharply and the difference with the random

sets was reduced (Fig. 5c, left panel). This pattern is probably

explained by the presence/absence and proportion of neigh-

bors across intervals (Fig. 5c, right panel).

Having established the dynamic impact of cancer proteins in

the global interactome network, we next examined the rela-

tionship between each of the sets according to the order of

cancer development and progression. Thus, the set of proteins

representing differentially expressed genes at the N-ADH

Fig. 4 Relationship between node load and the parameter a. (A) Top

left panel, proportion of failures across different values of a and for

two sets of proteins (n = 100 each), corresponding to the lowest and

the highest load (L) values. Maximum differences are observed for aD
0.1 and 1.1, while almost no difference is observed for a D 0.5. The

remaining panels show the pattern of failures across t and for a= 0.1,

0.5 and 1.1. (B) Having altered each node in the main component of

the interactome network, the graph shows the maximum number of

iterations of the model relative to t necessary to reach the steady state

(in which no additional failures occur).
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transition was identified and cascading failures were examined

at each subsequent stage. Using random sets adjusted by size

and node degree distributions (adjustment by cluster coeffi-

cient values had minimal influence on the results, not shown),

the results of these analyses indicated that cancer proteins also

tend to be robust to the initial molecular alteration; that is,

both under- and over-expressed cancer proteins during cancer

progression were usually deactivated less than randomly

expected (Fig. 6a shows results for randomization of the

N-ADH set, top panels, and the target sets, bottom panels;

Fig. 6b shows results using random sets of equivalent size to

the target set but unselected for their degree distribution).

Strong differences were also revealed at the later stages of

cancer progression (e.g. DCI-IDC, Fig. 6a), which, given that

no differences were previously observed (Fig. 5a), further

suggests the existence of a topological link across stages.

3.4 Cancer treatment response and specific node targeting are

associated with topological robustness

Having studied cancer development and progression, we next

evaluated the existence of topological robustness in the

conditions of cancer treatment response and targeted pertur-

bation. Over two-thirds of breast cancer patients present

tumors classified as estrogen receptor a (ERa)-positive.41 As

a single molecular marker, ERa is the most powerful in

distinguishing tumor subclasses according to prognosis and

response to endocrine therapies.42 Consequently, a common

therapeutic approach for ERa-positive breast cancer is to use

drugs, such as tamoxifen (Nolvadexs), directed at impeding

its binding to estrogens and the subsequent intracellular

signaling.42 In this scenario, to assess the link to breast cancer

prognosis and prediction, two sets of proteins in the network

were selected: those corresponding to the predictive signature

of tamoxifen response (named Recurrence Score43); and those

corresponding to genes differentially expressed between

MCF7 (ERa-positive) xenografts treated with estrogens versus

tamoxifen.29 Notably, in both cases, a lower number of

failures than randomly expected was observed (Fig. 7). Similar

topological robustness was observed for the under- and over-

expressed subsets, which indicates that cancer proteins which

define progression or prediction are similar, at the level of their

network impact, to those that characterize cancer development

and progression.

Fig. 5 Protein sets linked to cancer reveal topological robustness in the interactome network. (A) For different values of a as defined above, the

HPRD dataset, and the protein sets that define cancer development and progression, the graphs show the number of failures (random – observed)

across t. Black or colored lines (for under- and over-expressed sub-sets) indicate significant differences relative to random (empirical po 0.05). (B)

Same conditions but the random sets were only adjusted for their equivalent size to the test set, not for their degree distribution. (C) Left panel,

frequency of failures across shortest path intervals in a given cancer condition (N-IDC, similar patterns were observed for all cancer protein sets,

not shown). Right panel, distribution of neighbors across shortest path intervals for all nodes in the main component (present/absent and

proportion of neighbors).
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To further evaluate the observed topological robustness, we

experimentally perturbed a critical network node and evaluated

the link with the cancer stages. For this study we selected a gene,

a-synuclein (SNCA), that is consistently under-expressed in

MCF7 cells and breast tumors44,45 and encodes for a protein

with a relatively high number of interactors, kSNCA = 39.

Fig. 6 Protein sets linked to cancer development and progression reveal topological robustness in the interactome network. (A) For an

intermediate a (a D 0.5; similar results were obtained with other values, not shown), the HPRD dataset, and the protein sets that define cancer

stages subsequent to N-ADH, the graphs show the number of failures (random – observed) across t. Black or colored lines (for under- and over-

expressed sub-sets) indicate significant differences relative to random. (B) Same conditions but the random sets were only adjusted for their

equivalent size to the test set, not for their degree distribution.

Fig. 7 Proteins linked to cancer treatment response reveal topological robustness. For an intermediate a (a D 0.5; similar results were obtained

with other values, not shown), the HPRD dataset, and the protein sets that define all cancer stages, the graphs show the number of failures

(random – observed) across t. Black or colored lines (for under- and over-expressed sub-sets) indicate significant differences relative to random.

Top panels show results of the impact of the Recurrence Score set and bottom panels show results of the impact of the set that corresponds to

differentially expressed genes between MCF7 xenografts treated with estrogens versus tamoxifen.
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Following transfection with a SNCA expression construct,

two stable MCF7 clones were selected and examined for

expression differences relative to the parental MCF7 cells.

Notably, genes whose expression levels differentiate the two

cell types (>|2-fold|, File S7, ESIw) were also found to differ-

entiate tumors according to ERa status (Fig. 8a) and, overall,

the expression of a proliferation signature46 was reduced in

MCF7-SNCA relative to the parental MCF7 cells (Fig. 8b).

Next, selecting the corresponding protein set in the interactome

network revealed topological robustness; that is, causing a

lower number of failures than randomly expected (Fig. 8c).

This observation is consistent with the idea that proteins linked

to cancer—whether in development, progression or treatment

response—are associated with topological robustness.

3.5 Proteins involved in autophagy show an opposite

topological network impact to those related to cancer

The gene sets examined above are characterized by their link

to increased proliferation potential of cancer cells, either

through development and progression, or though comparison

with a control or parental cell type. Since similar conclusions

were reached with these sets, we next sought to identify which

biological feature might be associated with an opposite

impact; that is, provoking more failures than randomly

expected. To address this question, we ranked all proteins in

the interactome network according to their probability of

causing more failures than expected—using the N-IDC dataset

and adjusting by node degree—and applied the non-para-

metric algorithm in the GSEA tool33 to detect bias in signaling

pathways from KEGG. At a FDR of 5%, two related path-

ways were found to be biased towards causing more failures:

‘‘Regulation of Autophagy’’ and ‘‘SNARE Interactions in

Vesicular Transport’’ (Fig. 9a). These results were corro-

borated by examining the results of selecting the corre-

sponding KEGG sets (Fig. 9c and File S3, ESIw). In contrast,

and also consistent with observations made above, the sets

causing fewer failures than randomly expected were those

linked to cancer (Fig. 9b). Thus, while ‘‘Regulation of Autophagy’’

may be defined as an opposite biological process to cancer,

these results further endorse the biological relevance of the

topological robustness associated with cancer.

3.6 Smaller shortest paths between proteins involved in cancer

contribute to topological robustness

The common results from the analysis of cancer conditions

raise the question of which topological characteristic possessed

by the corresponding network nodes explains their associated

robustness. Taking previous evidence that cancer mutated or

differentially expressed gene products have smaller average

shortest path values in the interactome network,36–38,47–49

Fig. 8 Perturbation by targeting a cancer node reveals topological robustness. (A) Left panel, Western blot results demonstrating SNCA over-

expression in MCF7-SNCA cell lines, relative to the parental MCF7. Right panel, results of an unsupervised classification of primary breast

tumors and normal tissue using genes whose expression differentiate (>|2-fold|) MCF7-SNCA and MCF7 cells (File S7, ESIw). Tumor status for

ERa, progesterone receptor (PR) and v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2) are shown (black-filled box, positive;

white-filled box, negative; and grey-filled box, unknown status). (B) GSEA results for a proliferation signature ranked across the expression

differences between MCF7 and MCF7-SNCA cell lines. The position of the proliferation marker MKI67 is shown. (C) For an intermediate

a (a D 0.5; similar results were obtained with other values, not shown), the HPRD dataset, and the protein sets that define all cancer stages, the

graphs show the number of failures (random – observed) across t. Black or colored lines (for under- and over-expressed sub-sets) indicate

significant differences relative to random.
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we examined the contribution of this characteristic to the

topological robustness. For this analysis, starting with a

randomly selected node in the main network component, three

protein sets of identical size were generated by selecting each

neighbor at 2-, 4-, or 6-hops. Next, each of these sets was

selected as above and the number of failures examined relative

to random sets with an identical node degree distribution but

unselected for their shortest paths. The results of this analysis

revealed that the presence of a smaller shortest path distribu-

tion contributes to topological robustness: thus, the set with a

smaller shortest path distribution (average of 3.74) caused far

fewer failures than randomly expected, while the set with

larger shortest paths (average of 5.44) caused far more failures

than randomly expected (Fig. 10a). In addition, the 136 KEGG

sets identified above with a different impact to the cancer

conditions tended to have smaller shortest paths (Fig. 10b).

Nonetheless, there may be additional topological characteristics

contributing to the observed differences: some of the 136 sets

showed overlapping distributions with the cancer sets and, in

particular, the ‘‘SNARE Interactions in Vesicular Transport’’

set revealed a relatively small average shortest path value (2.69),

which is similar to that of the ‘‘Cell Cycle’’ set (2.67; all KEGG

set values are detailed in File S8, ESIw). Moreover, the breast

cancer sets (N-ADH to IDC-M) showed average shortest paths

between 4.09 and 4.26. Together, the results of this study

suggest that proteins altered in cancer are topologically dis-

tributed in the interactome network in a manner that is robust

relative to random perturbations.

4. Discussion

Previous studies have demonstrated that cancer proteins, as

defined by the products of genes withmutations or with expression

changes in tumors relative to their normal tissue counterparts,

occupy central positions in the interactome network.36–38,47–49

In these studies, centrality was examined through local

(degree and clustering coefficient) and global (betweenness

and closeness) measures. Additionally, integration of gene

expression and interactome data has proved useful in identifying

sets of genes/proteins that explain prognostic differences.11–14

Here, we performed a topological study of the interactome

network focused on the concepts of dynamism and robustness

associated with cancer-related conditions or perturbations.

Fig. 9 Proteins related to autophagy show an opposite topological

network impact to those related to cancer. (A) GSEA results for genes

from the ‘‘Regulation of Autophagy’’ KEGG annotated pathway,

ranked according to the probability of causing more failures than

randomly expected. (B) GSEA results for pathways whose corre-

sponding genes cause fewer failures than randomly expected. The graph

shows results for the ‘‘Cell Cycle’’ pathway. Detailed pathways were

significant at FDR-adjusted po 0.05. (C) For an intermediate a and the

HPRD dataset, results are shown for the impact of selecting the protein

set corresponding to the ‘‘Regulation of Autophagy’’ pathway.

Fig. 10 Smaller shortest paths between proteins involved in cancer perturbations contribute to topological robustness. (A) Left panel, shortest

path distributions of three protein sets selected through randomly chosen neighbors at 2-, 4-, and 6-hops (starting with a common seed node).

Right panels, for an intermediate a and the HPRD dataset, results are shown for the impact of selecting each of three protein sets. (B) Shortest path

distributions of KEGG sets with a different (orange curves, File S3, ESIw) or similar (blue curves, File S4, ESIw) topological impact to those of

cancer perturbations.
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To do so, we analyzed cascading failures of network nodes

following selection of defined protein sets linked to cancer and

compared the results to those of appropriate control sets.

Thus, analogously to the study of electricity load transfer,

capacity limit and cascading failures in power grids, this study

examines the impact and transmission of cancer expression

changes in the interactome network. Within this framework,

the results of our study suggest that cancer is associated with

topological robustness; that is, a cancer condition represented

by, for example, gene expression changes between normal

tissue and hyperplasia causes a lesser, more specific impact

on the network than expected by chance. In other words, the

biological change that a given cancer condition imposes on the

interactome network is relatively more controlled and less

broadly distributed at the topological level than randomly

expected. This appears to be the case for different analysis

parameters, which include controls for the degree and cluster

coefficient distributions, and for different cancer sets, which

include a targeted node perturbation.

Having identified a common topological feature for diverse

cancer conditions, we were intrigued by the potential existence

of sets of proteins (and their biological meaning) showing an

opposite impact. An unsupervised, protein-centered analysis

identified ‘‘Regulation of Autophagy’’ and ‘‘SNARE Inter-

actions in Vesicular Transport’’ to be such sets. While both

sets are functionally related, this observation may be in

agreement with the idea that autophagy and cancer are, in

general terms, contrary processes.40 Thus, from an inter-

actome network topology perspective, autophagy may consist

of a less precise process, in which information transfer is

relatively unrestrained. Furthermore, this observation might

support the observations of recent studies that identify targeting

autophagy in cancer as a promising line of therapy.50 Other

sets with a similar opposite impact to cancer may exist but they

were not captured by the protein-centered analysis. In fact, by

a set-centered analysis, several KEGG pathways related to the

immune response revealed a relatively strong opposite topo-

logical impact to those observed for cancer. Together, these

observations might also indicate that, although a large number

of gene and protein changes exist in a given cancer condition,

these are under topological control to prevent a more global

alteration of the interactome network, which would not be as

favorable for the cancer cell.

For the application of the cascading failure algorithm, we

assumed that a gene with a broader expression rank should

represent a more robust node in the network, as a cell may

possibly tolerate larger variation in the number of the corre-

sponding molecules prior to transferring its associated biological

information to the interaction partners. However, the conclu-

sions of our study may be limited by the fact that concordant

changes in gene and protein expressions are only observed for

approximately two-thirds of cases.51,52 In addition, although

the conclusions are supported by the analysis of several

expression datasets, as well as protein sets without a priori

expression knowledge, expression variability across samples

could also partially reflect disparate cell type contents, and

there is no clear biological proof that the defined parameters of

node load and capacity should be proportional to the number

of protein interactions. Analogously to the study of power

grids, a protein with a higher number of interactions is more

likely to be involved in a higher number of functions or

processes,53,54 hence it seems reasonable to assume that it

has a higher load as well as capacity for biological informa-

tion. The conclusions of this study might also be constrained

by the fact that the interactome networks are incomplete for

all existing, biologically relevant protein–protein interactions

and by the reliability of data repositories.55 Further analyses

using more detailed experimental data may be warranted to

corroborate the observed topological robustness associated

with cancer. In these future analyses, the link to the increased

signaling entropy in cancer17–19 may also be warranted in

comprehensively deciphering the systems-level properties of

cancer.

5. Conclusions

While cancer-related proteins are central in the interactome

network, this study reveals that cancer develops, progresses

and responds to therapies through restricted perturbation of

this network. Therefore, the topological analysis links robustness

to cancer and, in contrast, identifies autophagy as an opposite

condition, which might support its targeting for therapy.
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