Issue 2, 2012

Temperature and auxiliary ligand-controlled supramolecular assembly in a series of Zn(ii)-organic frameworks: syntheses, structures and properties

Abstract

Two temperature-dependent structures of 2D and 3D Zn(II)-organic frameworks (ZOFs) with a new 5-substituted benzene-1, 3-dicarboxylic ligand, 5-iodoisophthalic acid (H2IIP), and an auxiliary flexible ligand, 1,4-bis(1,2,4-triazol-1-yl)butane (btb), with different motifs, have been investigated. Results show that when the reaction was carried out at room temperature, a undulating 2D (4,4)-network, {[Zn(IIP)(btb)]·4H2O}n (1), which further extends into a novel “soft” 3D supramolecular microporous framework with two kinds of 1D nanochannels supported by face to face π⋯π stacking interactions and C–I⋯I halogen bonds, was generated. Under hydrothermal condition at 170 °C, however, a two-fold interpenetrated 3D framework with α-Po network topology, [Zn(IIP)(btb)]n (2), would be obtained. Interestingly, both the right- and left-handed 21 helical water chains lie in one kind of the nanochannels in 1. When the auxiliary ligand was replaced by a less flexible one with a shorter spacer length, 1,3-bis(1,2,4-triazol-1-yl)propane (btp), a novel temperature-independent single-walled discrete coordination tube, {[Zn(IIP)(btp)]·2H2O}n (3), was obtained at the same two temperatures. Inside the tube is found the 21 helical water chain. Interestingly, the reversible desorption/adsorption behavior to water is significantly observed in the frameworks 1 and 3. The framework 1 falls within the category of “recoverable collapsing” and “guest-induced re-formation” frameworks. The result shows their potential application as late-model water absorbents in the field of adsorption materials. Remarkably, the first discrete single-walled Zn(II) coordination tube 3 shows high framework stability and exhibits reversible desorption/adsorption to some small guest organic molecules (methanol, ethanol and isopropanol). Furthermore, these compounds exhibit blue fluorescence in the solid state.

Graphical abstract: Temperature and auxiliary ligand-controlled supramolecular assembly in a series of Zn(ii)-organic frameworks: syntheses, structures and properties

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2011
Accepted
28 Sep 2011
First published
07 Nov 2011

CrystEngComm, 2012,14, 590-600

Temperature and auxiliary ligand-controlled supramolecular assembly in a series of Zn(II)-organic frameworks: syntheses, structures and properties

K. Zhang, C. Hou, J. Song, Y. Deng, L. Li, S. W. Ng and G. Diao, CrystEngComm, 2012, 14, 590 DOI: 10.1039/C1CE05577A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements