Issue 21, 2011

Template directed assembly of dynamic micellar nanoparticles

Abstract

The ability to pattern functional nanoparticle arrays in multiple dimensions will enable future devices which exhibit functions that cannot be realized using unstructured nanoparticle arrays. Here we demonstrate the unique assembly properties of dynamic micellar nanoparticles by combining a top down lithographic nanopatterning technique with a solution-based bottom up self-assembly. The templates for the directed self-assembly of the micelles consisted of arrays of cylindrical recess features fabricated by nanoimprint lithography. Silica was coated on this patterned substrate and subsequently selectively functionalized with a positively charged molecular monolayer (N-(3-Trimethoxysilylpropyl) diethylenetriamine) to regulate the micelle-surface interactions. The self-assembled block co-polymer polystyrene-b-poly(4-vinyl pyridine) (PS480k–PVP145k) micelles were approximately 325nm in diameter in aqueous solutions (pH = 2.5) and 50nm in diameter in the dry state. The average number of micelles assembled per feature increased from less than 1 to 12 with increasing feature diameter in the range of 200nm–1μm. Using a 2D model for maximum packing of circles in circular host features, the effective sphere size of the micelles during assembly was calculated to be 250nm in diameter. Thus, the micelles exhibited three characteristic sizes during assembly, 325nm in bulk solution, 250nm during assembly, and 50nm in the dry state. This dramatic variation in nanoparticle volume during the assembly process offers unique opportunities for forming nanometre scale, multidimensional arrays not accessible using hard sphere building blocks.

Graphical abstract: Template directed assembly of dynamic micellar nanoparticles

Article information

Article type
Paper
Submitted
08 Jun 2011
Accepted
12 Aug 2011
First published
06 Sep 2011

Soft Matter, 2011,7, 10252-10257

Template directed assembly of dynamic micellar nanoparticles

K. A. Arpin, J. H. Pikul, W. P. King, H. Fan and P. V. Braun, Soft Matter, 2011, 7, 10252 DOI: 10.1039/C1SM06078C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements