Issue 19, 2011

Multicomponent hydrogels from enantiomeric amino acid derivatives: helical nanofibers, handedness and self-sorting

Abstract

In this study, chiral helical nanofibers have been obtained from suitable, co-assembling, two oppositely charged amino acid based two component hydrogels. An equimolar mixture of an N-terminally protected amino acid Fmoc-(L/D)Glu (Fmoc: N-fluorenyl-9-methoxycarbonyl, Glu: glutamic acid) and (L/D)Lys (Lys: lysine) can co-assemble to form hydrogels. These hydrogels have been characterised using circular dichroism (CD), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray powder diffraction, fluorescence spectroscopic and rheological studies. CD and AFM studies have been extensively used to examine the chiral/achiral nature of fibers obtained from different hydrogel systems. The equimolar mixture of two L-isomers, {Fmoc-(L)Glu + (L)Lys} in the assembled state, leads to the exclusive formation of left-handed helical nanofibers, whereas an equimolar mixture of two D-isomers, {Fmoc-(D)Glu + (D)Lys}, gives rise to right-handed helical nanofibers. The CD study of the gel obtained from the {Fmoc-(L)Glu + (L)Lys} system is exactly the mirror image of the CD signal obtained from the gel of the {Fmoc-(D)Glu + (D)Lys} system. These results suggest that the molecular chirality is being translated into the supramolecular helicity and the handedness of these fibers depends on the corresponding molecular chirality in the mixture of the two component system. Reversing the handedness of helical fibers is possible by using enantiomeric building blocks. Co-assembly of racemic and equimolar mixtures of all four components, i.e., [{Fmoc-(L)Glu + (L)Lys} + {Fmoc-(D)Glu + (D)Lys}] can also form hydrogels. Interestingly, in this racemic mixture self-sorting has been observed with the presence of almost equal amount of left- and right-handed helical nanofibers. The equimolar mixture of Fmoc-(L)Glu and L-ornithine/L-arginine also produces hydrogel with left-handed helical fibers. Moreover, the straight fiber has been observed from the two component hydrogel {Fmoc-(L)Glu + (L)Lys} system in the presence of Ca2+/Mg2+ ions. This indicates the straight nanofibers are obtained under suitable conditions and acid–base interaction is responsible for making the helical fibers at the nanoscale.

Graphical abstract: Multicomponent hydrogels from enantiomeric amino acid derivatives: helical nanofibers, handedness and self-sorting

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2011
Accepted
04 Jul 2011
First published
09 Aug 2011

Soft Matter, 2011,7, 8913-8922

Multicomponent hydrogels from enantiomeric amino acid derivatives: helical nanofibers, handedness and self-sorting

B. Adhikari, J. Nanda and A. Banerjee, Soft Matter, 2011, 7, 8913 DOI: 10.1039/C1SM05907F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements