Issue 13, 2011

Assembly of copolymer functionalized nanoparticles: a Monte Carlo simulation study

Abstract

Functionalizing nanoparticles with copolymer ligands is an attractive method to tailor the assembly of the nanoparticles. We use Monte Carlo simulation to demonstrate how the monomer sequence in the grafted copolymers is a tuning parameter to control assembly of nanoparticles, and the shapes, sizes and structures of the assembled nanoclusters. We have studied spherical nanoparticles grafted with AB copolymers with alternating or diblock sequences, and a range of monomer chemistries by varying strengths of like-monomer (A–A and/or B–B) attractive interactions in the presence of either relatively strong or negligible unlike-monomer (A–B) repulsive interaction. In the presence of negligible A–B repulsions the alternating sequence produces nanoclusters that are relatively isotropic regardless of whether A–A or B–B monomers are attractive, while the diblock sequence produces nanoclusters that are smaller and more compact when the block closer to the surface (A–A) is attractive and larger loosely held together clusters when the outer block (B–B) is attractive. In the presence of strong A–B repulsions the alternating sequence leads to either particle dispersion or smaller clusters than those at negligible A–B repulsions; for the diblock sequence strong and negligible A–B repulsions exhibit similar cluster characteristics. Additionally, diblock copolymer grafted particles tend to assemble into anisotropic shapes despite the isotropic grafting of the copolymer chains on the particle surface. Particle size and graft length balance enthalpic gain and entropic losses coming from inter-grafted particle contacts and/or inter- and intra-grafted chain contacts within the same grafted particle, and in turn dictates the shape and size of the cluster. For constant graft length and when A–A attractions are stronger than B–B attractions, diblock copolymer grafted particles form long “caterpillar-like” structures with large particle diameters, and short nanowires with small particle diameters. In the dilute concentration regime a small increase in the particle concentration does not change the cluster characteristics confirming that the structure within a cluster is primarily governed by the copolymer functionalization imparting a “valency” to the nanoparticle “atom”. This work illustrates how copolymer functionalization and tuning the grafted copolymer sequence could be an exciting new route experimentalists can take to tailor self-assembly of nanoparticles into target nanostructures.

Graphical abstract: Assembly of copolymer functionalized nanoparticles: a Monte Carlo simulation study

Supplementary files

Article information

Article type
Paper
Submitted
01 Feb 2011
Accepted
12 Apr 2011
First published
18 May 2011

Soft Matter, 2011,7, 5952-5964

Assembly of copolymer functionalized nanoparticles: a Monte Carlo simulation study

T. B. Martin, A. Seifpour and A. Jayaraman, Soft Matter, 2011, 7, 5952 DOI: 10.1039/C1SM05179B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements