Issue 7, 2011

Non-Gaussian athermal fluctuations in active gels

Abstract

Dynamic networks designed to model the cell cytoskeleton can be reconstituted from filamentous actin, the motor protein myosin and a permanent cross-linker. They are driven out of equilibrium when the molecular motors are active. This gives rise to athermal fluctuations that can be recorded by tracking probe particles that are dispersed in the network. We have here probed athermal fluctuations in such “active gels” using video microrheology. We have measured the full distribution of probe displacements, also known as the van Hove correlation function. The dominant influence of thermal or athermal fluctuations can be detected by varying the lag time over which the displacements are measured. We argue that the exponential tails of the distribution derive from single motors close to the probes, and we extract an estimate of the velocity of motor heads along the actin filaments. The distribution exhibits a central Gaussian region which we assume derives from the action of many independent motor proteins far from the probe particles when athermal fluctuations dominate. Recording the whole distribution rather than just the typically measured second moment of probe fluctuations (mean-squared displacement) thus allowed us to differentiate between the effect of individual motors and the collective action of many motors.

Graphical abstract: Non-Gaussian athermal fluctuations in active gels

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2010
Accepted
20 Jan 2011
First published
21 Feb 2011

Soft Matter, 2011,7, 3234-3239

Non-Gaussian athermal fluctuations in active gels

T. Toyota, D. A. Head, C. F. Schmidt and D. Mizuno, Soft Matter, 2011, 7, 3234 DOI: 10.1039/C0SM00925C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements