Issue 6, 2011

Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

Abstract

Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

Graphical abstract: Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

Article information

Article type
Paper
Submitted
04 Feb 2011
Accepted
17 Mar 2011
First published
21 Apr 2011

Nanoscale, 2011,3, 2552-2559

Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

H. Chibli, L. Carlini, S. Park, N. M. Dimitrijevic and J. L. Nadeau, Nanoscale, 2011, 3, 2552 DOI: 10.1039/C1NR10131E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements