Escherichia coli
growth is a complicated process involved in many factors including the utilization of glucose. It has been reported that E. colicell growth rate is closely related with glucose concentrations in the cell culture medium. However, the protein regulation networks in response to glucose concentration changes are largely unknown. In the present study, a sub-proteomic methodology has been utilized to characterize alterations of E. coliOM proteins in response to 0.02, 0.2 and 2% concentrations of glucose. In comparison with E. colicells treated with 0.2% glucose concentration, downregulation of FhuE, FepA, CirA, TolC and OmpX and upregulation of LamB, FadL, OmpF, OmpT and Dps were detected in the E. colicells treated with 0.02% glucose, and a decrease of TolC, LamB, OmpF, OmpT, OmpX, Dps and elevation of FhuE, FepA, CirA, YncD, FadL and MipA were found in 2% glucose. TolC, LamB and OmpT showed more important roles than other altered OM proteins. Furthermore, the interaction among these altered OM proteins was investigated, and protein interaction networks were characterized. In the networks, all proteins were interacted and regulated by others. TolC, LamB and Dps were the top three proteins that regulated more proteins than others, whereas CirA and OmpT were the top two proteins that were regulated by others. The protein networks could be modified correspondingly with the changes of glucose concentrations. The modifications included the addition of new OM proteins or the change of regulation direction. These findings suggest the important roles of the bacterial OM protein network in E. coli's responses to glucose concentration changes and other environment stresses.