Issue 16, 2011

Controlled release of reagents in capillary-driven microfluidics using reagent integrators

Abstract

The integration and release of reagents in microfluidics as used for point-of-care testing is essential for an easy and accurate operation of these promising diagnostic devices. Here, we present microfluidic functional structures, which we call reagent integrators (RIs), for integrating and releasing small amounts of dried reagents (ng quantities and less) into microlitres of sample in a capillary-driven microfluidic chip. Typically, a RI is less than 1 mm2 in area and has an inlet splitting into a central reagent channel, in which reagents can be loaded using an inkjet spotter, and two diluter channels. During filling of the microfluidic chip, spotted reagents reconstitute and exit the RI with a dilution factor that relates to the relative hydraulic resistance of the channels forming the RI. We exemplify the working principle of RIs by (i) distributing ∼100 pg of horseradish peroxidase (HRP) in different volume fractions of a 1 μL solution containing a fluorogenic substrate for HRP and (ii) performing an immunoassay for C-reactive protein (CRP) using 450 pg of fluorescently labeled detection antibodies (dAbs) that reconstitute in ∼5 to 30% of a 1 μL sample of human serum. RIs preserve the conceptual simplicity of lateral flow assays while providing a great degree of control over the integration and release of reagents in a stream of sample. We believe RIs to be broadly applicable to microfluidic devices as used for biological assays.

Graphical abstract: Controlled release of reagents in capillary-driven microfluidics using reagent integrators

Article information

Article type
Paper
Submitted
04 Apr 2011
Accepted
25 May 2011
First published
15 Jun 2011

Lab Chip, 2011,11, 2680-2685

Controlled release of reagents in capillary-driven microfluidics using reagent integrators

M. Hitzbleck, L. Gervais and E. Delamarche, Lab Chip, 2011, 11, 2680 DOI: 10.1039/C1LC20282K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements