Issue 6, 2011

Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment

Abstract

Device function in organic electronics is critically governed by the transport of charge across interfaces of dissimilar materials. Accurate measurements of energy level positions in organic electronic devices are therefore necessary for assessing the viability of new materials and optimizing device performance. In contrast to established methods that are used in solution or vacuum environments, here we combine Kelvin probe measurements performed in ambient environments to obtain work function values with photoelectron spectroscopy in air to obtain ionization potential, so that a complete energy level diagram for organic semiconductors can be determined. We apply this new approach to study commonly used electron donor and acceptor materials in organic photovoltaics (OPV), including poly(3-hexylthiophene) (P3HT), [6,6]-phenyl C61 butyric acid methyl ester (PCBM), and ZnO, as well as examine new materials. Band alignments across the entire OPV devices are constructed and compared with actual device performance. The ability to determine interfacial electronic properties in the devices enables us to answer the outstanding question: why previous attempts to make OPV devices using 6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene as the electron donor were not successful.

Graphical abstract: Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2010
Accepted
13 Oct 2010
First published
26 Nov 2010

J. Mater. Chem., 2011,21, 1721-1729

Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment

R. J. Davis, M. T. Lloyd, S. R. Ferreira, M. J. Bruzek, S. E. Watkins, L. Lindell, P. Sehati, M. Fahlman, J. E. Anthony and J. W. P. Hsu, J. Mater. Chem., 2011, 21, 1721 DOI: 10.1039/C0JM02349C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements