Issue 12, 2011

CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors

Abstract

CNT/Ni hybrid nanostructured arrays (NSAs) are synthesized on a stainless steel substrate through a one-step chemical-vapor-deposition (CVD) method using nullaginite NSAs as starting materials. During the CVD process, the nullaginite NSAs are transformed into Ni NSAs, which can further act as the catalysts to initiate the simultaneous in situ growth of CNTs on their surface, leading to an intriguing three-dimensional (3D) hybrid nanostructure. The resulting ordered CNT/Ni NSAs are highly porous and conductive, which are believed to be quite favorable for electrochemical applications. As a proof-of-concept demonstration of the functions of such a well-designed architecture in energy storage, the CNT/Ni NSAs are tested as the working electrodes of electrochemical capacitors (ECs). After being activated, the composite electrode exhibits both well-defined pseudo-capacitive and electrical double-layer behavior with high areal capacitance (up to ∼0.901 F cm−2), excellent cyclability (nearly 100% capacitance retention after 5000 cycles), and outstanding rate capability. The unique interconnected hybrid structure and virtues inherited from the conductive CNT network and porous NSAs are believed to be responsible for the excellent performance.

Graphical abstract: CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2011
Accepted
15 Sep 2011
First published
13 Oct 2011

Energy Environ. Sci., 2011,4, 5000-5007

CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors

J. Jiang, J. Liu, W. Zhou, J. Zhu, X. Huang, X. Qi, H. Zhang and T. Yu, Energy Environ. Sci., 2011, 4, 5000 DOI: 10.1039/C1EE02293H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements