Issue 5, 2011

Correction for a possible reversible adsorption over an “inert” material

Abstract

All TAP micro-reactor configurations contain inert particles which are used so that the catalyst zone can be maintained under isothermal conditions. Even on “inert” particles adsorption will occur to some degree; however, the extent to which this occurs has a critical influence on the analysis of the TAP data. In many cases the assumption that there is no interaction between probe molecules and inert particles is required as reversible adsorption over inert material is problematic when the TAP model has to be solved. Moreover, as the TAP pulse response experiments are designed to be conducted within the Knudsen diffusion regime, central to TAP data analysis is the characterization of the diffusional transport of reagent molecules through the micro-reactor, which is achieved via “diffusion only” experiments over an inert one zone packing. Therefore, if there are any processes occurring in addition to Knudsen diffusion over the inert material, such as reversible adsorption, it is important to factor these into the analysis. If these additional processes are not included, the entire data analysis would be questionable. The current work discloses the development of a function which accounts for the adsorption over the inert material, so that the TAP data analysis can be accurately determined. This newly developed analysis method has been exemplified using the selective reduction of oxygen in a hydrogen rich ethylene feed over silver catalysts as a case study.

Graphical abstract: Correction for a possible reversible adsorption over an “inert” material

Supplementary files

Article information

Article type
Paper
Submitted
05 Dec 2010
Accepted
12 Jan 2011
First published
14 Feb 2011

Catal. Sci. Technol., 2011,1, 760-767

Correction for a possible reversible adsorption over an “inert” material

A. Goguet, C. Hardacre, B. Inceesungvorn, K. Morgan and S. O. Shekhtman, Catal. Sci. Technol., 2011, 1, 760 DOI: 10.1039/C0CY00075B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements