Issue 5, 2010

Modelling texture perception by soft epithelial surfaces

Abstract

This paper introduces a mechanistic approach to relate the sensations of touch by epithelial surfaces of for example skin, eye or mouth to the material properties of the substrate. The approach is to model the hydrodynamic and frictional forces exerted by the substrate onto the surfaces, which are deformable and compliant to these forces. Subsequently these forces are related to the neurological responses of the mechanoreceptors buried in these surfaces. The potential of the approach is illustrated for textural perception of food materials in the mouth. It leads to several concepts for textural perception in the mouth, some of which have been demonstrated previously and some of which are new. As a first example, the branching into high and low viscosity regimes for thickness perception found experimentally can be linked directly to the detection limit of the neural receptors. As a second example, by taking into account the intrinsic roughness and deformability of the papilla surface, estimates are obtained for the cross-over between the hydrodynamic friction regime, where the papilla tips are lubricated by a thin liquid film (smooth mouthfeel), and the boundary friction regime, where the papilla tips are in direct contact with the opposing surface of the palate (rough mouthfeel). This has implications for the role of viscosity on smoothness and astringency sensations. As a final example, the model suggests that the sensation of hard particles (grittiness) can be suppressed by increasing the viscosity of the medium, which is in agreement with experimental findings from sensory studies.

Graphical abstract: Modelling texture perception by soft epithelial surfaces

Article information

Article type
Emerging Area
Submitted
12 Aug 2009
Accepted
17 Nov 2009
First published
04 Jan 2010

Soft Matter, 2010,6, 826-834

Modelling texture perception by soft epithelial surfaces

G. A. van Aken, Soft Matter, 2010, 6, 826 DOI: 10.1039/B916708K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements