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Baseline drift always blurs or even swamps signals and deteriorates analytical results, particularly in

multivariate analysis. It is necessary to correct baseline drift to perform further data analysis. Simple or

modified polynomial fitting has been found to be effective to some extent. However, this method

requires user intervention and is prone to variability especially in low signal-to-noise ratio

environments. A novel algorithm named adaptive iteratively reweighted Penalized Least Squares

(airPLS) that does not require any user intervention and prior information, such as peak detection etc.,

is proposed in this work. The method works by iteratively changing weights of sum squares errors (SSE)

between the fitted baseline and original signals, and the weights of the SSE are obtained adaptively

using the difference between the previously fitted baseline and the original signals. The baseline

estimator is fast and flexible. Theory, implementation, and applications in simulated and real datasets

are presented. The algorithm is implemented in R language and MATLAB�, which is available as open

source software (http://code.google.com/p/airpls).
Introduction

Some signals of analytical instruments, such as chromatography,

nuclear magnetic resonance (NMR) and vibrational spectros-

copy, basically consist of chemical information, baseline and

random noises. However, the existence of the baseline and

random noises can negatively affect qualitative or quantitative

analytical results, since the baseline always appears as a sample-

independent smooth curve. It should be fitted and corrected

routinely to mitigate the negative influence. Conventionally,

analysts manually point out the two ends of a signal peak, and fit

a curve as the baseline using piecewise linear approximation.

However, manual piecewise linear approximation is not so

effective and its accuracy clearly depends on the user’s experi-

ence.1 Hence, numerous algorithms have been proposed to make

a better estimate of the baseline, and literature on this topic is

scattered across many fields, mainly including chromatog-

raphy,2–6 vibrational spectroscopy7–13 and NMR.14–16

In order to improve the signal detection and resolution of

chemical components with very low concentrations, Liang et al.2

introduced the roughness penalty method to reduce the influence of

this measurement noise. Shao et al.3,4 proposed a novel algorithm

which relied on wavelet transform in denoising, baseline correction

and determination of component number in overlapping chro-

matograms. Boelens et al.5 applied asymmetric least squares

regression to correct the measured spectra during elution for the

background contribution. A method for preprocessing pyrolysis-

gas chromatography-differential mobility spectrometry (Py-GC-

DMS) data via asymmetric least square (ALS) to remove any

unavoidable baseline shifts was also proposed by Cheung et al.6
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Using techniques of robust local regression to estimate base-

lines in spectra, Ruckstuhl et al.7 introduced novel robust base-

line estimation. Schechter8 suggested a method to correct for

fluctuating nonlinear background in near infrared spectroscopy.

Lieber et al.9 described a modification to least-squares poly-

nomial curve fitting to avoid shortcomings of simple curve

fitting. By designing and minimizing a non-quadratic cost func-

tion, Mazet et al.10 removed Infrared and Raman spectra back-

ground fast and simply. Zhao et al.11 developed an improved

automated algorithm for fluorescence removal based on modi-

fied multi-polynomial fitting with a peak-removal procedure

during the first iteration and a statistical method to account for

signal noise effects. Morh12 presented sensitive nonlinear itera-

tive peak clipping algorithms to estimate background in various

kinds of spectra. Zhang et al.13 suppressed fluorescent back-

ground in Raman spectroscopy using a wavelet and penalized

least squares algorithm.

Golotvin14 presented a new approach to baseline correction

using a smoothed NMR spectrum for both baseline area recog-

nition and modeling. Cobas et al.15 recognized signal-free regions

using a continuous wavelet transform (CWT) derivative calcu-

lation and fitted baseline based on the Whittaker smoother

algorithm. Chang et al.16 designed a robust baseline correction

algorithm for signal dense NMR spectra.

In sum, simple or modified polynomial fitting,1,9,11,17–19 penal-

ized or weighted least square,2,5,6,9,10,13,15,20,21 wavelet,3,4,13,22–24

derivatives,13,19,25 and robust local regression7 are frequently used

for baseline correction in analytical chemistry. However, each of

them has some drawbacks in certain aspects: (1) Simple manual

polynomial fitting is not so effective and its accuracy clearly

depends on the user’s experience;1,13 the modified polynomial

fitting methods overcome drawbacks of their predecessor, but

their performances are poor in low signal-to-noise and signal-to-

background ratio environments.11,13 (2) Penalized least square
This journal is ª The Royal Society of Chemistry 2010
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was initially proposed for smoothing, which relies on peak

detection and is prone to produce negative regions in complex

signals.13,15,26 (3) Wavelet baseline correction algorithms always

suppose that the baseline is well separated in the transformed

domain from the signal, but real-world signals do not agree with

this hypothesis.24,27 (4) Derivative algorithms change original

peak shapes after the correction, which may cause difficulty in

the interpretation of the preprocessed spectra.19 (5) Robust local

regression requires that the baseline must be smooth and vary

slowly, and it also needs to specify the bandwidth and the tuning

parameters by the user.7 (6) The baseline Wavelet package13 can’t

process signals large than 5000 variables in Windows XP�,

because there are no appropriate sparse matrix and corre-

sponding linear algebra library in R language.

In this paper, a fast and flexible baseline fitting algorithm is

proposed, which relies on adaptive iteratively reweighted penal-

ized least squares (airPLS). An iteratively reweighted procedure is

executed to gradually approximate a complex baseline. The

weights of iteration are obtained adaptively using SSE between

a previously fitted baseline and the original signals. In order to

control the smoothness of the fitted baseline, a penalty approach is

introduced based on sum squared derivatives of the fitted baseline.

The proposed algorithm is intuitional and effective. It can be

implemented in less than a 50 lines code in MATLAB� and R

language. Since the MATLAB� version is implemented based on

sparse matrices and is extremely fast, it is recommended to users.

The paper is organized as follows. Statistical concepts, relevant

to the airPLS algorithm, are presented and investigated in the

theory section. Then, the airPLS algorithm is applied to simu-

lated data, chromatograms, Raman spectra and NMR signals to

demonstrate its performance. Results of the above applications

will be presented together with discussions about the proposed

algorithm. Finally, some conclusions and perspectives are given

in the conclusion section.
Theory

Penalized least squares algorithm

The penalized least squares algorithm is a flexible smoothing

method published by Whittaker in 1922.28 Later, Silverman29,30

developed a new smoothing technique in statistics, which was

called the roughness penalty method. The penalized least squares

algorithm can be regarded as roughness penalty smooth by least

squares, which balanced between fidelity to the original data and

the roughness of the fitted data. Liang et al.2 introduced it into

chemistry as a smoothing technique to improve the signal detec-

tion and resolution of chemical components with very low

concentrations in hyphenated chromatographic two-way data.

Recently, Eilers extended its application scopes to general chem-

ical signal smoothing,26 peak aligning21 and baseline correction.20

Assuming x is the vector of the analytical signals, and z is the

fitted vector. The lengths of them are both m. The fidelity of z to x

can be expressed as the sum square errors between them:

F ¼
Xm

i¼1

ðxi � ziÞ2 (1)

The roughness of the fitted data z can be written as its squared

and summed differences,
This journal is ª The Royal Society of Chemistry 2010
R ¼
Xm

i¼2

ðzi � zi�1Þ2¼
Xm�1

i¼1

ðDziÞ2 (2)

The first differences penalty is adopted to simplify the

presentation here. In most cases, the square of the second

differences penalties can be a natural way to quantify the

roughness.30 The airPLS package offers a parameter for users to

choose the orders of the differences.

The balance of fidelity and smoothness can be then measured

as the fidelity plus with penalties on the roughness, and it can be

given by:

Q ¼ F + lR ¼ kx � zk2 + lkDzk2 (3)

Here l can be adjusted by the user. A larger l brings a smoother

fitted vector. Balance of fidelity and smoothness can be achieved

by tuning this parameter. D is the derivative of the identity

matrix such that Dz ¼ Dz.

By finding the vector of partial derivatives and equating it

to 0

�
vQ

vz
¼ 0

�
, we get a linear system of equations that can be

easily solved:

(I + lD’D)z ¼ x (4)

Eqn (4) is a smooth method using the penalized least squares

algorithm. In order to correct a baseline using the penalized least

squares algorithm, Cobas15 and Zhang13 introduced a weight

vector of fidelity, and set zero to the weights vector at a position

corresponding to peak segments of x. Fidelity of z to x is changed

to

F ¼
Xm

i¼1

wiðxi � ziÞ2¼ ðx� zÞ0Wðx� zÞ (5)

W is a diagonal matrix with wi on its diagonal.

The eqn (4) changes to

(W + lD’D)z ¼ Wx (6)

Solving the above linear equations, the fitted vector can be

obtained easily:

z ¼ (W + lD’D)�1Wx (7)

The baseline correction methods of Cobas15 and Zhang13 both

need peak detection before baseline correction, but the existence

of a baseline will negatively affect peak detection. Zhang et al.

overcame this dilemma by transforming the spectrum into

a wavelet space, and finding peaks in the wavelet space. The

algorithm proposed by Cobas will produce a negative part when

the baseline is complex, and Zhang et al. did some special

treatments to some special peak regions, such as peaks with

shoulders, overlapping peaks etc., to avoid the appearance of

negative parts.13 The algorithm proposed by Zhang et al. is

accurate but time consuming, using wavelet transformation and

special treatments. One can bear half a minute per spectrum

when applied to one-dimension spectra. However, when applied

to two-dimensional datasets such as GC-MS and HPLC-DAD, it

can’t finish correcting one dataset even in an hour. The adaptive
Analyst, 2010, 135, 1138–1146 | 1139
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Fig. 1 Flow chart describing the framework of the airPLS algorithm.
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iteratively reweighted procedure is proposed to replace peak

detection and special treatment steps.

Adaptive iteratively reweighted procedure

Without setting zeros to the weight vector at positions corre-

sponding to peak segments, the penalized least squares algorithm

can be certainly categorized as a smoothing algorithm. Eilers20,21

proposed a novel and effective baseline correction algorithm

based on asymmetric least squares,31 which means asymmetric

weights of least squares. However, it has some drawbacks. Firstly

two parameters, namely asymmetry and smoothing parameters,

need to be optimized to obtain a satisfactory result. Secondly

asymmetry parameters are all the same for all the baseline region

points, but we think that the weights of the baseline region

should set different values according to the differences between

the previously fitted baseline and the original signals.

The adaptive iteratively reweighted procedure is similar to the

weighted least squares and iteratively reweighted least squares,32–34

but using different ways to calculate the weights and adding

a penalty item to control the smoothness of the fitted baseline.

Each step of the proposed adaptive iteratively reweighted

procedure involves solving a weigthed penalized least squares

problem of the following form:

Qt ¼
Xm

i¼1

wt
i

��xi � zt
i

��2 þ l
Xm

j¼2

��zt
j � zt

j�1

��2 (8)

The weight vector w is obtained adaptively using an iterative

method. One should give an initial value w0 ¼ 1 at the starting

step. After initialization, the w of each iterative step t can be

obtained using the following expressions:

wt
i ¼

0 xi $ zt�1
i

e

tðxi � zt�1
i Þ

jdtj xi \zt�1
i

8><
>: (9)

Vector dt consists of negative elements of the differences

between x and zt�1 in the t iteration step.

The fitted value zt�1 in the previous (t � 1) iteration is

a candidate of baseline. If the value of the ith point is greater than

the candidate of baseline, it can be regarded as part of a peak. So

its weight is set to zero to ignore it at the next iteration of fitting.

In the airPLS algorithm, the iterative and reweight methods are

used to automatically and gradually eliminate the points of peaks

and preserve the baseline points in the weight vector w.

Iteration will stop either with the maximal iteration times or

when the terminative criterion is reached. The termination

criterion is defined by:

|dt| < 0.001 � |x| (10)

Here, vector dt also consists of negative elements of differences

between x and zt�1.

The flow chart describing the architecture of the proposed

algorithm is shown in Fig. 1.

Experimental section

Chromatography, Raman and NMR are crucial analytical

instruments, whose analytical results are impaired by the
1140 | Analyst, 2010, 135, 1138–1146
appearance of baselines. The airPLS algorithm is applied to

them to demonstrate its performance. But the experimental

section initially starts with the simulated data with known peak

heights.

Simulated data

Simulated data consist of linear or curved baselines, analytical

signals, and random noise, which can be mathematically

described as follows

s(x) ¼ p(x) + b(x) + n(x) (11)

Here, s(x) denotes the resulted simulated data, p(x) the pure

analytical signal, b(x) the linear or curved baseline and n(x) the

random noise.

Pure signals are three Gaussian peaks with different intensity

(listed in Table 1), means and variances. The curved baseline is

a sin curve. Random noise n(x) is generated using the

random number generator (the rnorm() function of R

language), whose intensity is about 1 percent of the simulated

signals.

Simulated data are illustrated in Fig. 2. The pure signals can be

seen in Fig. 2(a). Fig. 2(b) and Figure 2(c) are pure signals with

linear and curved baseline, respectively.

Chromatograms

Chromatograms, analyses of the Red Peony Root using HPLC-

DAD, were selected to test the proposed algorithm. 8 of Red

Peony Root were collected from different producing areas in

China, and a standard sample was also bought from the National

Institute for control of Pharmaceutical and Biological Products.

The experiments were performed at Chromap Co., Ltd Zhuhai,

China. 2 UV spectra per second from 200 nm to 600 nm with

a bandwidth of 4 nm resulted in 100 data points in each UV

spectrum, then the ‘‘most peaks rich’’ wavelength 230 nm was
This journal is ª The Royal Society of Chemistry 2010
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Table 1 94 different combinations of volumes of ternary mixtures of
methanol, acetonitrile and distilled watera

Ratio of
methanol

Added volume
of methanol/mL

Added volume
of acetonitrile/mL

Added volume
of distilled water/mL

0.01 0.5 0/10/20 49.5/39.5/29.5
0.04 2 0/10/20 48/38/28
0.07 3.5 0/10/20 46.5/36.5/26.5
0.1 5 0/10/20 45/35/25
0.13 6.5 0/10/20 43.5/33.5/23.5
0.16 8 0/10/20 42/32/22
0.2 10 0/10/20 40/30/20
0.23 11.5 0/10/20 38.5/28.5/18.5
0.26 13 0/10/20 37/27/17
0.3 15 0/10/20 35/25/15
0.33 16.5 0/5/10 33.5/28.5/22.5
0.36 18 0/5/10 32/27/22
0.4 20 0/5/10 30/25/20
0.43 21.5 0/5/10 28.5/23.5/18.5
0.46 23 0/5/10 27/22/17
0.5 25 0/5/10 25/20/15
0.53 26.5 0/5/10 23.5/18.5/13.5
0.56 28 0/5/10 22/17/12
0.6 30 0/5/10 20/15/10
0.63 31.5 0/5/10 18.5/13.5/8.5
0.66 33 0/2/5 17/15/12
0.7 35 0/2/5 15/13/10
0.73 36.5 0/2/5 13.5/11.5/8.5
0.76 38 0/2/5 12/10/7
0.8 40 0/2/5 10/8/5
0.83 41.5 0/2/5 8.5/6.5/3.5
0.86 43 0/2/5 7/5/2
0.9 45 0/2/5 5/3/0
0.93 46.5 0/1/3.5 3.5/2.5/0
0.96 48 0/1/2 2/1/0
0.99 49.5 0/0.25/0.5 0.5/0.25/0
1.00 50 0 0

a When different volumes of acetonitrile and distilled water were added,
the baselines were different.
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selected. The data were transformed into ASCII format using HP

chemstations (version A.09.01) for further analysis. The chro-

matograms can be seen in Fig. 3. The standard chromatogram is

illustrated in Fig. 3(a). 8 chromatograms were plotted in

Fig. 3(b), and one can obviously see that the baseline drifts vary

from sample to sample.
Fig. 2 Simulated data. (a) Pure signal of three Gaussian peaks; (b) pure sign

background and random noise.

This journal is ª The Royal Society of Chemistry 2010
Raman spectra of medicines tablets for classification

Prednisone Acetate Tablets (PATs) and Glibenclamide Tablets

(GTs) were measured using a laser of 785 nm wavelength for

excitation by BWTEK i-Raman-785 spectrometer with a 2048

elements thermoelectric cooled linear charge-coupled device

(TEC-CCD) arrays. PATs, from 10 different pharmaceutical

factories, were recorded using 5000 ms integration times. GTs,

from 6 different pharmaceutical factories, were also recorded

using 5000 ms integration times to obtain comparable spectra.

Since we measured 3 Tablets for each pharmaceutical factory,

there are 48 Raman spectra in total.

Raman spectra of methanol solutions for regression

Raman spectra for regression were used of ternary mixtures of

methanol, acetonitrile and distilled water. Table 1 shows the 94

different combinations of volumes which were measured using

a laser of 785 nm wavelength for excitation by BWTEK

i-Raman-785 spectrometer too. All the spectra were also recor-

ded using 7500 ms integration times to obtain comparable

spectra. A baseline-correction of the 94 spectra was also per-

formed using three different baseline-correction methods. Then,

partial least squares (PLS) and cross-validation by the leave-one-

out (LOOCV) methods were applied in order to evaluate the

regression models and baseline-correction methods.

NMR

Performance of the proposed baseline correction algorithms was

also tested on NMR signals. NMR signals are available from ref.

35.

Result and discussion

Comparison with other algorithms using simulated results

The subtraction of linear and curved baselines has been done

using the proposed airPLS algorithm, the fully automatic base-

line-correction procedure of Carlos Cobas15 (short for FABC

algorithm) and Asymmetric Least Squares baseline correction of

P. H. C Eilers20,21 (short for ALS algorithm). The corrected
al with linear background and random noise; (c) pure signal with curved

Analyst, 2010, 135, 1138–1146 | 1141
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Fig. 3 Chromatograms of Red Peony Root to correct. (a) Standard chromatogram. (b) Chromatograms of Red Peony Root were collected from

different producing areas.
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results of the airPLS algorithm can be seen in Fig. 4. Both linear

and curved baselines are removed successfully, which has proven

the flexibility of the airPLS algorithm. One can also see that both

the linear and curved baselines are fitted only in three iterations.

It means that the airPLS algorithm converges swiftly. Because

simulated data are constructed using three known Gaussian
Fig. 4 Correction results of simulated data with different baselines, the itera

baseline.

1142 | Analyst, 2010, 135, 1138–1146
peaks, the expected heights of peaks are also known. Hence

heights before and after correction are compared to the expected

heights. The comparison results of the FABC algorithm, the ALS

algorithm and the airPLS algorithm are shown in Table 2. The

airPLS algorithm corrected the linear baseline accurately, espe-

cially for the small peaks. In the curved baseline, the airPLS
tion steps are illustrated using gray colors. (a) Linear baseline, (b) curved

This journal is ª The Royal Society of Chemistry 2010
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Table 2 Comparison of the baseline correction results and the expected
heights

Baseline
type Peak ID

Peak Height

Uncorrected Expected FABCa ALSb airPLSc

linear Peak 1 94.45 79.78 79.71 77.83 79.97
Peak 2 78.06 47.87 48.40 38.25 48.29
Peak 3 34.73 17.09 6.077 10.89 17.42

curved Peak 1 95.10 79.78 79.59 77.83 79.55
Peak 2 93.70 47.87 47.73 38.25 46.60
Peak 3 93.38 17.09 6.505 10.89 16.26

a Parameters for the FABC method: a ¼ 10, lambda ¼ 10. b Parameters
for the ALS method: lambda¼ 10, p¼ 0.001, d¼ 2. c Parameters for the
airPLS method: lambda ¼ 10.

Fig. 6 First two principal components of the PCA scores of original,

corrected and standard chromatograms. Circle means standard; Plus

signs mean corrected; and Triangles mean original. Movement trends are

marked out with arrows.
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algorithm corrected the baseline as well as the FABC algorithm

and the ALS algorithm for the large peaks, but with a much

better result for the small peak. One can infer from Table 2 that

the airPLS algorithm corrected the baseline as well as the other

algorithm for large peaks, but much better than the FABC and

ALS algorithm for small peaks which were swamped by either

linear or curved baselines.
Result of chromatograms

8 HPLC chromatograms of Red Peony Root were corrected

using l¼ 30. Fig. 5 is the corrected chromatograms. As there was

a standard chromatogram, principle component analysis (PCA)

was applied to the matrix consisting of original, corrected and

standard chromatograms. Then the scores of the first and the

second principle components were plotted in Fig. 6 to investigate

the influences on clustering analysis of the proposed airPLS

algorithm. In Fig. 6, circle means standard chromatograms; plus

signs mean corrected chromatograms; and triangles mean orig-

inal chromatograms. Since movement trends of points are indi-

cated using arrows in Fig. 6, one can obviously observe that

corrected chromatograms tend to approach the standard
Fig. 5 Correction results of chromatograms of Red Peony Root.

This journal is ª The Royal Society of Chemistry 2010
chromatogram after correction. It can demonstrate the validity

of the airPLS algorithm. The corrected chromatograms were

more compact in pattern space and closer to the standard

chromatogram. The compactness and closeness in principle

components pattern space would improve clustering and classi-

fication results to some extent.
Classification of Raman spectra of medicine tablets

The proposed airPLS algorithm was applied to Raman spectra of

PATs and GTS with highly fluorescent baselines. All the base-

lines of 48 spectra of tablets from different factories were

removed successfully (see Fig. 7). PCA was used to investigate

the classification result of the proposed airPLS algorithm. In the

first case, PCA was performed on the matrix consisting of orig-

inal spectra. The first two principal components were taken out

and plotted in Fig. 8(a). One can see that PATs samples and GTs

samples were mixed in the principal component spaces, which

means that the classification result is not satisfied. Then PCA was

also performed with the same spectra, but they were pre-

processed by the airPLS algorithm to remove baselines. Fig. 8(b)

is the scatter-plots of the two principal components. One can see

that the classification result is obviously improved, which is

attributed to the airPLS algorithm. In summary, the airPLS

algorithm could correct the baseline effectively with reserving

primary useful information, which is good for classification.
Comparison of regression results of methanol solutions

Before, the PLS and LOOCV methods were used to evaluate the

regression models and baseline-correction algorithms. The

FABC algorithm, the ALS algorithm and the airPLS algorithm

were applied to the 94 spectra to remove the baselines. Then three

corrected spectra datasets were obtained using these three

different baseline-correction algorithms. The PLS regression
Analyst, 2010, 135, 1138–1146 | 1143
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Fig. 7 Baseline-correction results of the Raman spectra of PATs and

GTs. (a) And (c) are original spectra. (b) And (d) are corrected ones.

Fig. 8 Plots of PCA scores. (a) First two principal components of the

PCA score of the original spectra without any preprocessing. (b) First

four principal components of the PCA score of the corrected spectra. The

ijth scatter plot contains PCi plotted against PCj.

Table 3 Comparison of regression parameters for methanol solutions
with different baseline correction algorithmsa

Correction
algorithm Parameters

Number of principal components

1 2 3 4 5

Uncorrected R2 0.9156 0.9932 0.9965 0.9975 0.9990
Q2 0.9117 0.9928 0.9961 0.9973 0.9989
RMSECV 0.1739 0.0261 0.0186 0.0156 0.0099

FABC R2 0.9370 0.9680 0.9840 0.9902 0.9933
Q2 0.9353 0.9658 0.9699 0.9803 0.9908
RMSECV 0.0931 0.0554 0.0519 0.0426 0.0286

ALS R2 0.9588 0.9951 0.9968 0.9984 0.9990
Q2 0.9581 0.9946 0.9970 0.9982 0.9988
RMSECV 0.0724 0.0225 0.0166 0.0128 0.0104

airPLS R2 0.9705 0.9973 0.9975 0.9983 0.9991
Q2 0.9702 0.9971 0.9973 0.9982 0.9989
RMSECV 0.0668 0.0160 0.0156 0.0131 0.0098

a Only 5 principal components were used, because we know that the
methanol solutions were ternary mixtures.

1144 | Analyst, 2010, 135, 1138–1146
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models were built with the three corrected spectra datasets to

calculate the value of R2 and evaluate the fitting abilities of

models. In order to estimate the predictive abilities of the three

models, the LOOCV method was also used to calculate the Q2

and Root mean square error of cross validation (RMSECV). The

R2, Q2 and RMSECV were listed in Table 3. The values of R2, Q2

and RMSECV of regression models pretreated by the airPLS

algorithm were evidently better than those pretreated by FABC,

ALS and uncorrected, especially when the principal number is

small.

Result obtained from NMR signals

The performance of the proposed approach was also tested on

the NMR signal described in the experimental section. This

NMR signal is used to test the performance of the airPLS

algorithm on high-throughput data, which has approximately

16500 variables. A satisfactory correction result could be

obtained with l ¼ 500. One can see that 6 iterations were

accomplished to fit the final baseline in Fig. 9. The execution was

only 0.2340 s, which means that the airPLS algorithm is

extremely fast. It is the magic of the sparse matrix.

Tuning l to obtain a better estimation of the baseline

The l parameter should be tuned to obtain a better estimation of

the real baseline. Since l varies from 1 to 109, the common grid

searching method will fail in this situation. Eilers20 recommended

searching for the optimal l on a grid that is approximately linear

for logl. If l is too large, the fitted baseline will be too flat. If l is

too small, the fitted baseline will be too flexible to include the

peak parts. Because there are significant differences when l is too

large or too small, one can optimize the parameter manually

using a method like binary search algorithm. Start with l ¼ 1,

and multiply l by 10 when the fitted baseline is too flexible and

includes some parts of the peaks. If l is large enough and the

fitted baseline is flatter than the real baseline, stop multiplying
Fig. 9 Baseline-correction results of NMR signal with 16384 variables.
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l by 10 and search for the optimal l in the region using binary

search until satisfactory.

We have implemented this airPLS algorithm in C++ and MFC

to provide a better user interface for baseline-correction. One can

tune the lambda parameter by dragging the slider easily.

Speed issue and expansibility

The 165000 variables NMR signal is used to test the speed of the

proposed algorithm. The result showed that the airPLS algo-

rithm is amazingly fast. It can finish six iterations in only 0.2340 s.

The number of variables, total execution time, iteration times

and execution time per iteration of simulated data, chromato-

grams, Raman spectra and NMR signal are listed in Table 4. One

could infer from the table that the airPLS algorithm is extremely

fast even for large datasets with sixteen thousand variables. The

relationship between number of variables and execution time per

iteration was investigated in detail. It was found that the

execution time per iteration is exactly a linear relationship with

the number of variables, which can be seen in Fig. 10. The exactly

linear relationship between the number of variables and the

execution time per iteration guarantees the performance of the

airPLS algorithm in data with even more number of variables.

This is mainly attributed to the use of a sparse matrix. One could

also infer from Table 4 that the airPLS algorithm converges

swiftly in only several iterations, which is mainly attributed to the
Table 4 Execution time of simulated data, chromatograms, Raman
spectra and NMR signala

Dataset
number of
variables

total execution
time(s)

iteration
times

execution time
per iteration(s)

Simulated data 603 0.0160 4 0.0040
Raman spectra 1751 0.0320 5 0.0064
Chromatograms 4000 0.0460 5 0.0092
NMR signal 16384 0.1880 6 0.0313

a Different datasets were used to deduce the relationship between the
execution time per iteration and the number of variables.

Fig. 10 Relation between number of variables and execution time per

iteration.

This journal is ª The Royal Society of Chemistry 2010
exponential reweigh strategy. It could be concluded that the use

of sparse matrix and exponential reweigh strategy enable the

application of the airPLS algorithm in more high-throughput

domain and two dimensional datasets (such as GC-MS and

HPLC-DAD).
Conclusion

The airPLS algorithm provides a simple but flexible, valid and

fast algorithm for estimating baselines in analytical chemistry.

There is one crucial but intuitional parameter l to control the

smoothness of the fitted baseline. It gives extremely fast and

accurate baseline corrected signals for both simulated and real

signals. The successful results of the simulated and real signals

have proven that the proposed approach can be applied to

chromatograms, Raman spectra and NMR signals. Now the

airPLS algorithm is being tested for correcting MALDI-TOF

and GC-MS datasets and the results will be published elsewhere

soon.
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