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Baseline drift always blurs or even swamps signals and deteriorates analytical results, particularly in
multivariate analysis. It is necessary to correct baseline drift to perform further data analysis. Simple or
modified polynomial fitting has been found to be effective to some extent. However, this method
requires user intervention and is prone to variability especially in low signal-to-noise ratio
environments. A novel algorithm named adaptive iteratively reweighted Penalized Least Squares
(airPLS) that does not require any user intervention and prior information, such as peak detection etc.,
is proposed in this work. The method works by iteratively changing weights of sum squares errors (SSE)
between the fitted baseline and original signals, and the weights of the SSE are obtained adaptively
using the difference between the previously fitted baseline and the original signals. The baseline
estimator is fast and flexible. Theory, implementation, and applications in simulated and real datasets
are presented. The algorithm is implemented in R language and MATLAB™, which is available as open

source software (http://code.google.com/p/airpls).

Introduction

Some signals of analytical instruments, such as chromatography,
nuclear magnetic resonance (NMR) and vibrational spectros-
copy, basically consist of chemical information, baseline and
random noises. However, the existence of the baseline and
random noises can negatively affect qualitative or quantitative
analytical results, since the baseline always appears as a sample-
independent smooth curve. It should be fitted and corrected
routinely to mitigate the negative influence. Conventionally,
analysts manually point out the two ends of a signal peak, and fit
a curve as the baseline using piecewise linear approximation.
However, manual piecewise linear approximation is not so
effective and its accuracy clearly depends on the user’s experi-
ence.! Hence, numerous algorithms have been proposed to make
a better estimate of the baseline, and literature on this topic is
scattered across many fields, mainly including chromatog-
raphy,?® vibrational spectroscopy’* and NMR.'*¢

In order to improve the signal detection and resolution of
chemical components with very low concentrations, Liang et al.?
introduced the roughness penalty method to reduce the influence of
this measurement noise. Shao et al.3* proposed a novel algorithm
which relied on wavelet transform in denoising, baseline correction
and determination of component number in overlapping chro-
matograms. Boelens er al® applied asymmetric least squares
regression to correct the measured spectra during elution for the
background contribution. A method for preprocessing pyrolysis-
gas chromatography-differential mobility spectrometry (Py-GC-
DMS) data via asymmetric least square (ALS) to remove any
unavoidable baseline shifts was also proposed by Cheung ez al.®
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Using techniques of robust local regression to estimate base-
lines in spectra, Ruckstuhl et al.” introduced novel robust base-
line estimation. Schechter® suggested a method to correct for
fluctuating nonlinear background in near infrared spectroscopy.
Lieber et al® described a modification to least-squares poly-
nomial curve fitting to avoid shortcomings of simple curve
fitting. By designing and minimizing a non-quadratic cost func-
tion, Mazet et al.'® removed Infrared and Raman spectra back-
ground fast and simply. Zhao et al.'' developed an improved
automated algorithm for fluorescence removal based on modi-
fied multi-polynomial fitting with a peak-removal procedure
during the first iteration and a statistical method to account for
signal noise effects. Morh'? presented sensitive nonlinear itera-
tive peak clipping algorithms to estimate background in various
kinds of spectra. Zhang et al'® suppressed fluorescent back-
ground in Raman spectroscopy using a wavelet and penalized
least squares algorithm.

Golotvin'* presented a new approach to baseline correction
using a smoothed NMR spectrum for both baseline area recog-
nition and modeling. Cobas et al.'’ recognized signal-free regions
using a continuous wavelet transform (CWT) derivative calcu-
lation and fitted baseline based on the Whittaker smoother
algorithm. Chang er al.'® designed a robust baseline correction
algorithm for signal dense NMR spectra.

In sum, simple or modified polynomial fitting, penal-
ized or weighted least square,>>6:%10:13:15:20.21 qyelet,3:4.13:22-24
derivatives,'*!*2* and robust local regression” are frequently used
for baseline correction in analytical chemistry. However, each of
them has some drawbacks in certain aspects: (1) Simple manual
polynomial fitting is not so effective and its accuracy clearly
depends on the user’s experience;'* the modified polynomial
fitting methods overcome drawbacks of their predecessor, but
their performances are poor in low signal-to-noise and signal-to-
background ratio environments.'>"® (2) Penalized least square
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was initially proposed for smoothing, which relies on peak
detection and is prone to produce negative regions in complex
signals.'*!%2¢ (3) Wavelet baseline correction algorithms always
suppose that the baseline is well separated in the transformed
domain from the signal, but real-world signals do not agree with
this hypothesis.>**” (4) Derivative algorithms change original
peak shapes after the correction, which may cause difficulty in
the interpretation of the preprocessed spectra.’ (5) Robust local
regression requires that the baseline must be smooth and vary
slowly, and it also needs to specify the bandwidth and the tuning
parameters by the user.” (6) The baseline Wavelet package'® can’t
process signals large than 5000 variables in Windows XP®,
because there are no appropriate sparse matrix and corre-
sponding linear algebra library in R language.

In this paper, a fast and flexible baseline fitting algorithm is
proposed, which relies on adaptive iteratively reweighted penal-
ized least squares (airPLS). An iteratively reweighted procedure is
executed to gradually approximate a complex baseline. The
weights of iteration are obtained adaptively using SSE between
a previously fitted baseline and the original signals. In order to
control the smoothness of the fitted baseline, a penalty approach is
introduced based on sum squared derivatives of the fitted baseline.
The proposed algorithm is intuitional and effective. It can be
implemented in less than a 50 lines code in MATLAB® and R
language. Since the MATLAB® version is implemented based on
sparse matrices and is extremely fast, it is recommended to users.

The paper is organized as follows. Statistical concepts, relevant
to the airPLS algorithm, are presented and investigated in the
theory section. Then, the airPLS algorithm is applied to simu-
lated data, chromatograms, Raman spectra and NMR signals to
demonstrate its performance. Results of the above applications
will be presented together with discussions about the proposed
algorithm. Finally, some conclusions and perspectives are given
in the conclusion section.

Theory
Penalized least squares algorithm

The penalized least squares algorithm is a flexible smoothing
method published by Whittaker in 1922.2% Later, Silverman?*-*
developed a new smoothing technique in statistics, which was
called the roughness penalty method. The penalized least squares
algorithm can be regarded as roughness penalty smooth by least
squares, which balanced between fidelity to the original data and
the roughness of the fitted data. Liang ef al.? introduced it into
chemistry as a smoothing technique to improve the signal detec-
tion and resolution of chemical components with very low
concentrations in hyphenated chromatographic two-way data.
Recently, Eilers extended its application scopes to general chem-
ical signal smoothing,?® peak aligning®' and baseline correction.?®

Assuming x is the vector of the analytical signals, and z is the
fitted vector. The lengths of them are both m. The fidelity of z to x
can be expressed as the sum square errors between them:

m

F= Z(x,- -z) (1)

The roughness of the fitted data z can be written as its squared
and summed differences,
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The first differences penalty is adopted to simplify the
presentation here. In most cases, the square of the second
differences penalties can be a natural way to quantify the
roughness.*® The airPLS package offers a parameter for users to
choose the orders of the differences.

The balance of fidelity and smoothness can be then measured
as the fidelity plus with penalties on the roughness, and it can be
given by:

Q= F+IR=|x 2| + A|Da? 3)

Here A can be adjusted by the user. A larger A brings a smoother
fitted vector. Balance of fidelity and smoothness can be achieved
by tuning this parameter. D is the derivative of the identity
matrix such that Dz = Az.

By finding the vector of partial derivatives and equating it
d . .
to 0 (a—Q = 0), we get a linear system of equations that can be
b4
easily solved:

I+ D’D)z = x @)

Eqn (4) is a smooth method using the penalized least squares
algorithm. In order to correct a baseline using the penalized least
squares algorithm, Cobas'® and Zhang" introduced a weight
vector of fidelity, and set zero to the weights vector at a position
corresponding to peak segments of x. Fidelity of z to x is changed
to

F= Z wi(x; — z;)’= (x —2) W(x — 2) (5)

W is a diagonal matrix with w; on its diagonal.
The eqn (4) changes to

(W + \D’D)z = Wx (6)

Solving the above linear equations, the fitted vector can be
obtained easily:

z= (W + \D’D)"'Wx (7)

The baseline correction methods of Cobas's and Zhang'® both
need peak detection before baseline correction, but the existence
of a baseline will negatively affect peak detection. Zhang et al.
overcame this dilemma by transforming the spectrum into
a wavelet space, and finding peaks in the wavelet space. The
algorithm proposed by Cobas will produce a negative part when
the baseline is complex, and Zhang et al did some special
treatments to some special peak regions, such as peaks with
shoulders, overlapping peaks etc., to avoid the appearance of
negative parts.'® The algorithm proposed by Zhang et al. is
accurate but time consuming, using wavelet transformation and
special treatments. One can bear half a minute per spectrum
when applied to one-dimension spectra. However, when applied
to two-dimensional datasets such as GC-MS and HPLC-DAD, it
can’t finish correcting one dataset even in an hour. The adaptive
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iteratively reweighted procedure is proposed to replace peak
detection and special treatment steps.

Adaptive iteratively reweighted procedure

Without setting zeros to the weight vector at positions corre-
sponding to peak segments, the penalized least squares algorithm
can be certainly categorized as a smoothing algorithm. Eilers?®-*!
proposed a novel and effective baseline correction algorithm
based on asymmetric least squares,®' which means asymmetric
weights of least squares. However, it has some drawbacks. Firstly
two parameters, namely asymmetry and smoothing parameters,
need to be optimized to obtain a satisfactory result. Secondly
asymmetry parameters are all the same for all the baseline region
points, but we think that the weights of the baseline region
should set different values according to the differences between
the previously fitted baseline and the original signals.

The adaptive iteratively reweighted procedure is similar to the
weighted least squares and iteratively reweighted least squares,’*3*
but using different ways to calculate the weights and adding
a penalty item to control the smoothness of the fitted baseline.
Each step of the proposed adaptive iteratively reweighted
procedure involves solving a weigthed penalized least squares
problem of the following form:

m m

0= Y il 2> )5 -4 f ®)
=

i=1

The weight vector w is obtained adaptively using an iterative
method. One should give an initial value w® = 1 at the starting
step. After initialization, the w of each iterative step t can be
obtained using the following expressions:

0 x; =z
w={ txi—z") )
’ ] -

X,‘<ZI-

€

Vector d' consists of negative elements of the differences
between x and z'~! in the 7 iteration step.

The fitted value z'! in the previous (t — 1) iteration is
a candidate of baseline. If the value of the ith point is greater than
the candidate of baseline, it can be regarded as part of a peak. So
its weight is set to zero to ignore it at the next iteration of fitting.
In the airPLS algorithm, the iterative and reweight methods are
used to automatically and gradually eliminate the points of peaks
and preserve the baseline points in the weight vector w.

Iteration will stop either with the maximal iteration times or
when the terminative criterion is reached. The termination
criterion is defined by:

d] < 0.001 x |x] (10)

Here, vector d' also consists of negative elements of differences
between x and z'"'.

The flow chart describing the architecture of the proposed
algorithm is shown in Fig. 1.

Experimental section

Chromatography, Raman and NMR are crucial analytical
instruments, whose analytical results are impaired by the

s )

— h, specified by user
x, analytical instrument ;
3 according to roughness of
signal vector

L J L baseline to fit

, -L/).I.

-

assigning w'=1 reweight W' using z"'

! l

s \ [
fit z° using w'=1 and fit ' using w' and penalized]
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NO
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[ finally fitted baseline z ]

Fig. 1 Flow chart describing the framework of the airPLS algorithm.

appearance of baselines. The airPLS algorithm is applied to
them to demonstrate its performance. But the experimental
section initially starts with the simulated data with known peak
heights.

Simulated data

Simulated data consist of linear or curved baselines, analytical
signals, and random noise, which can be mathematically
described as follows

5(x) = p(x) + b(x) + n(x) (11)

Here, s(x) denotes the resulted simulated data, p(x) the pure
analytical signal, b(x) the linear or curved baseline and n(x) the
random noise.

Pure signals are three Gaussian peaks with different intensity
(listed in Table 1), means and variances. The curved baseline is
a sin curve. Random noise n(x) is generated using the
random number generator (the rnorm() function of R
language), whose intensity is about 1 percent of the simulated
signals.

Simulated data are illustrated in Fig. 2. The pure signals can be
seen in Fig. 2(a). Fig. 2(b) and Figure 2(c) are pure signals with
linear and curved baseline, respectively.

Chromatograms

Chromatograms, analyses of the Red Peony Root using HPLC-
DAD, were selected to test the proposed algorithm. 8 of Red
Peony Root were collected from different producing areas in
China, and a standard sample was also bought from the National
Institute for control of Pharmaceutical and Biological Products.
The experiments were performed at Chromap Co., Ltd Zhuhai,
China. 2 UV spectra per second from 200 nm to 600 nm with
a bandwidth of 4 nm resulted in 100 data points in each UV
spectrum, then the “most peaks rich” wavelength 230 nm was
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Table 1 94 different combinations of volumes of ternary mixtures of
methanol, acetonitrile and distilled water?

Ratio of Added volume  Added volume Added volume
methanol of methanol/mL of acetonitrile/mL of distilled water/mL
0.01 0.5 0/10/20 49.5/39.5/29.5
0.04 2 0/10/20 48/38/28

0.07 3.5 0/10/20 46.5/36.5/26.5
0.1 5 0/10/20 45/35/25

0.13 6.5 0/10/20 43.5/33.5/23.5
0.16 8 0/10/20 42/32/22

0.2 10 0/10/20 40/30/20

0.23 11.5 0/10/20 38.5/28.5/18.5
0.26 13 0/10/20 37127117

0.3 15 0/10/20 35/25/15

0.33 16.5 0/5/10 33.5/28.5/22.5
0.36 18 0/5/10 32/27/22

0.4 20 0/5/10 30/25/20

0.43 21.5 0/5/10 28.5/23.5/18.5
0.46 23 0/5/10 27/22/17

0.5 25 0/5/10 25/20/15

0.53 26.5 0/5/10 23.5/18.5/13.5
0.56 28 0/5/10 22/17/12

0.6 30 0/5/10 20/15/10

0.63 31.5 0/5/10 18.5/13.5/8.5
0.66 33 0/2/5 17/15/12

0.7 35 0/2/5 15/13/10

0.73 36.5 0/2/5 13.5/11.5/8.5
0.76 38 0/2/5 12/10/7

0.8 40 0/2/5 10/8/5

0.83 41.5 0/2/5 8.5/6.5/3.5
0.86 43 0/2/5 71512

0.9 45 0/2/5 5/3/0

0.93 46.5 0/1/3.5 3.5/2.5/0

0.96 48 0/1/2 2/1/0

0.99 49.5 0/0.25/0.5 0.5/0.25/0
1.00 50 0 0

“ When different volumes of acetonitrile and distilled water were added,
the baselines were different.

selected. The data were transformed into ASCII format using HP
chemstations (version A.09.01) for further analysis. The chro-
matograms can be seen in Fig. 3. The standard chromatogram is
illustrated in Fig. 3(a). 8 chromatograms were plotted in
Fig. 3(b), and one can obviously see that the baseline drifts vary
from sample to sample.

pure signal

pure signal with linear baseline and random noise

Raman spectra of medicines tablets for classification

Prednisone Acetate Tablets (PATs) and Glibenclamide Tablets
(GTs) were measured using a laser of 785 nm wavelength for
excitation by BWTEK i-Raman-785 spectrometer with a 2048
elements thermoelectric cooled linear charge-coupled device
(TEC-CCD) arrays. PATs, from 10 different pharmaceutical
factories, were recorded using 5000 ms integration times. GTs,
from 6 different pharmaceutical factories, were also recorded
using 5000 ms integration times to obtain comparable spectra.
Since we measured 3 Tablets for each pharmaceutical factory,
there are 48 Raman spectra in total.

Raman spectra of methanol solutions for regression

Raman spectra for regression were used of ternary mixtures of
methanol, acetonitrile and distilled water. Table 1 shows the 94
different combinations of volumes which were measured using
a laser of 785 nm wavelength for excitation by BWTEK
i-Raman-785 spectrometer too. All the spectra were also recor-
ded using 7500 ms integration times to obtain comparable
spectra. A baseline-correction of the 94 spectra was also per-
formed using three different baseline-correction methods. Then,
partial least squares (PLS) and cross-validation by the leave-one-
out (LOOCV) methods were applied in order to evaluate the
regression models and baseline-correction methods.

NMR

Performance of the proposed baseline correction algorithms was
also tested on NMR signals. NMR signals are available from ref.
35.

Result and discussion

Comparison with other algorithms using simulated results

The subtraction of linear and curved baselines has been done
using the proposed airPLS algorithm, the fully automatic base-
line-correction procedure of Carlos Cobas' (short for FABC
algorithm) and Asymmetric Least Squares baseline correction of
P. H. C Eilers***" (short for ALS algorithm). The corrected

pure signal with curve baseline and random noise
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Fig. 2 Simulated data. (a) Pure signal of three Gaussian peaks; (b) pure signal with linear background and random noise; (c) pure signal with curved

background and random noise.
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Standard chromatogram of Red Peony Root
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Fig. 3 Chromatograms of Red Peony Root to correct. (a) Standard chromatogram. (b) Chromatograms of Red Peony Root were collected from

different producing areas.

results of the airPLS algorithm can be seen in Fig. 4. Both linear
and curved baselines are removed successfully, which has proven
the flexibility of the airPLS algorithm. One can also see that both
the linear and curved baselines are fitted only in three iterations.
It means that the airPLS algorithm converges swiftly. Because
simulated data are constructed using three known Gaussian

correction result of linear baseline

/\ /
o _|
[s0]
2
c
o _|
)
=
8
<
2 o |
w v
1)
=
o _|
(3]
P J j\/
T T T

T | | |
0 50 100 150 200 250 300

(a) Sample intervals

peaks, the expected heights of peaks are also known. Hence
heights before and after correction are compared to the expected
heights. The comparison results of the FABC algorithm, the ALS
algorithm and the airPLS algorithm are shown in Table 2. The
airPLS algorithm corrected the linear baseline accurately, espe-
cially for the small peaks. In the curved baseline, the airPLS

correction result of curved baseline
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Fig. 4 Correction results of simulated data with different baselines, the iteration steps are illustrated using gray colors. (a) Linear baseline, (b) curved

baseline.
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Table 2 Comparison of the baseline correction results and the expected
heights

Peak Height

Baseline
type Peak ID  Uncorrected Expected FABC® ALS® airPLS®

linear Peak 1 9445 79.78 79.71 77.83  79.97
Peak 2 78.06 47.87 48.40 38.25 48.29
Peak 3 34.73 17.09 6.077 10.89 17.42
curved — Peak I  95.10 79.78 79.59 77.83 79.55
Peak 2 93.70 47.87 47.73 38.25 46.60
Peak 3 93.38 17.09 6.505 10.89 16.26

@ Parameters for the FABC method: a = 10, lambda = 10. * Parameters
for the ALS method: lambda = 10, p = 0.001, d = 2. © Parameters for the
airPLS method: lambda = 10.

algorithm corrected the baseline as well as the FABC algorithm
and the ALS algorithm for the large peaks, but with a much
better result for the small peak. One can infer from Table 2 that
the airPLS algorithm corrected the baseline as well as the other
algorithm for large peaks, but much better than the FABC and
ALS algorithm for small peaks which were swamped by either
linear or curved baselines.

Result of chromatograms

8 HPLC chromatograms of Red Peony Root were corrected
using A = 30. Fig. 5 is the corrected chromatograms. As there was
a standard chromatogram, principle component analysis (PCA)
was applied to the matrix consisting of original, corrected and
standard chromatograms. Then the scores of the first and the
second principle components were plotted in Fig. 6 to investigate
the influences on clustering analysis of the proposed airPLS
algorithm. In Fig. 6, circle means standard chromatograms; plus
signs mean corrected chromatograms; and triangles mean orig-
inal chromatograms. Since movement trends of points are indi-
cated using arrows in Fig. 6, one can obviously observe that
corrected chromatograms tend to approach the standard

1000 1500 2000 2500
1 1 1
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Fig. 5 Correction results of chromatograms of Red Peony Root.
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Fig. 6 First two principal components of the PCA scores of original,
corrected and standard chromatograms. Circle means standard; Plus
signs mean corrected; and Triangles mean original. Movement trends are
marked out with arrows.

chromatogram after correction. It can demonstrate the validity
of the airPLS algorithm. The corrected chromatograms were
more compact in pattern space and closer to the standard
chromatogram. The compactness and closeness in principle
components pattern space would improve clustering and classi-
fication results to some extent.

Classification of Raman spectra of medicine tablets

The proposed airPLS algorithm was applied to Raman spectra of
PATs and GTS with highly fluorescent baselines. All the base-
lines of 48 spectra of tablets from different factories were
removed successfully (see Fig. 7). PCA was used to investigate
the classification result of the proposed airPLS algorithm. In the
first case, PCA was performed on the matrix consisting of orig-
inal spectra. The first two principal components were taken out
and plotted in Fig. 8(a). One can see that PATs samples and GTs
samples were mixed in the principal component spaces, which
means that the classification result is not satisfied. Then PCA was
also performed with the same spectra, but they were pre-
processed by the airPLS algorithm to remove baselines. Fig. 8(b)
is the scatter-plots of the two principal components. One can see
that the classification result is obviously improved, which is
attributed to the airPLS algorithm. In summary, the airPLS
algorithm could correct the baseline effectively with reserving
primary useful information, which is good for classification.

Comparison of regression results of methanol solutions

Before, the PLS and LOOCYV methods were used to evaluate the
regression models and baseline-correction algorithms. The
FABC algorithm, the ALS algorithm and the airPLS algorithm
were applied to the 94 spectra to remove the baselines. Then three
corrected spectra datasets were obtained using these three
different baseline-correction algorithms. The PLS regression
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Spectra of Prednisone Acetate Tables Corrected Spectra of Prednisone Acetate Tables
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Fig. 7 Baseline-correction results of the Raman spectra of PATs and
GTs. (a) And (c) are original spectra. (b) And (d) are corrected ones.
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Fig. 8 Plots of PCA scores. (a) First two principal components of the
PCA score of the original spectra without any preprocessing. (b) First
four principal components of the PCA score of the corrected spectra. The
ijth scatter plot contains PCi plotted against PCj.

Table 3 Comparison of regression parameters for methanol solutions
with different baseline correction algorithms®

Number of principal components

Correction

algorithm Parameters 1 2 3 4 5

Uncorrected R? 0.9156 0.9932  0.9965 0.9975 0.9990
Q? 09117 0.9928 0.9961 0.9973 0.9989
RMSECV  0.1739 0.0261 0.0186 0.0156 0.0099

FABC R? 0.9370 0.9680 0.9840 0.9902 0.9933
Q? 0.9353  0.9658 0.9699 0.9803 0.9908
RMSECV  0.0931 0.0554 0.0519 0.0426 0.0286

ALS R? 0.9588 0.9951 0.9968 0.9984 0.9990
Q? 0.9581 0.9946 0.9970 0.9982 0.9988
RMSECV  0.0724 0.0225 0.0166 0.0128 0.0104

airPLS R? 0.9705 0.9973 0.9975 0.9983 0.9991
Q? 0.9702 0.9971 0.9973 0.9982 0.9989

RMSECV  0.0668 0.0160 0.0156 0.0131 0.0098

“ Only 5 principal components were used, because we know that the
methanol solutions were ternary mixtures.

models were built with the three corrected spectra datasets to
calculate the value of R? and evaluate the fitting abilities of
models. In order to estimate the predictive abilities of the three
models, the LOOCV method was also used to calculate the Q?
and Root mean square error of cross validation (RMSECYV). The
R2, Q% and RMSECYV were listed in Table 3. The values of R2, Q?
and RMSECV of regression models pretreated by the airPLS
algorithm were evidently better than those pretreated by FABC,
ALS and uncorrected, especially when the principal number is
small.

Result obtained from NMR signals

The performance of the proposed approach was also tested on
the NMR signal described in the experimental section. This
NMR signal is used to test the performance of the airPLS
algorithm on high-throughput data, which has approximately
16500 variables. A satisfactory correction result could be
obtained with A = 500. One can see that 6 iterations were
accomplished to fit the final baseline in Fig. 9. The execution was
only 0.2340 s, which means that the airPLS algorithm is
extremely fast. It is the magic of the sparse matrix.

Tuning A to obtain a better estimation of the baseline

The A parameter should be tuned to obtain a better estimation of
the real baseline. Since A varies from 1 to 10°, the common grid
searching method will fail in this situation. Eilers?® recommended
searching for the optimal A on a grid that is approximately linear
for logh. If A is too large, the fitted baseline will be too flat. If A is
too small, the fitted baseline will be too flexible to include the
peak parts. Because there are significant differences when A is too
large or too small, one can optimize the parameter manually
using a method like binary search algorithm. Start with A = 1,
and multiply A by 10 when the fitted baseline is too flexible and
includes some parts of the peaks. If A is large enough and the
fitted baseline is flatter than the real baseline, stop multiplying

Baseline correction result of NMR signal
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Fig. 9 Baseline-correction results of NMR signal with 16384 variables.
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A by 10 and search for the optimal A in the region using binary
search until satisfactory.

We have implemented this airPLS algorithm in C++ and MFC
to provide a better user interface for baseline-correction. One can
tune the lambda parameter by dragging the slider easily.

Speed issue and expansibility

The 165000 variables NMR signal is used to test the speed of the
proposed algorithm. The result showed that the airPLS algo-
rithm is amazingly fast. It can finish six iterations in only 0.2340 s.
The number of variables, total execution time, iteration times
and execution time per iteration of simulated data, chromato-
grams, Raman spectra and NMR signal are listed in Table 4. One
could infer from the table that the airPLS algorithm is extremely
fast even for large datasets with sixteen thousand variables. The
relationship between number of variables and execution time per
iteration was investigated in detail. It was found that the
execution time per iteration is exactly a linear relationship with
the number of variables, which can be seen in Fig. 10. The exactly
linear relationship between the number of variables and the
execution time per iteration guarantees the performance of the
airPLS algorithm in data with even more number of variables.
This is mainly attributed to the use of a sparse matrix. One could
also infer from Table 4 that the airPLS algorithm converges
swiftly in only several iterations, which is mainly attributed to the

Table 4 Execution time of simulated data, chromatograms, Raman
spectra and NMR signal

number of total execution iteration execution time

Dataset variables  time(s) times per iteration(s)
Simulated data 603 0.0160 4 0.0040
Raman spectra 1751 0.0320 5 0.0064
Chromatograms 4000 0.0460 5 0.0092
NMR signal 16384 0.1880 6 0.0313

“ Different datasets were used to deduce the relationship between the
execution time per iteration and the number of variables.

Relation between number of variables and execution time per iteration
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Fig. 10 Relation between number of variables and execution time per
iteration.

exponential reweigh strategy. It could be concluded that the use
of sparse matrix and exponential reweigh strategy enable the
application of the airPLS algorithm in more high-throughput
domain and two dimensional datasets (such as GC-MS and
HPLC-DAD).

Conclusion

The airPLS algorithm provides a simple but flexible, valid and
fast algorithm for estimating baselines in analytical chemistry.
There is one crucial but intuitional parameter A to control the
smoothness of the fitted baseline. It gives extremely fast and
accurate baseline corrected signals for both simulated and real
signals. The successful results of the simulated and real signals
have proven that the proposed approach can be applied to
chromatograms, Raman spectra and NMR signals. Now the
airPLS algorithm is being tested for correcting MALDI-TOF
and GC-MS datasets and the results will be published elsewhere
soon.
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