Issue 3, 2010

Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer

Abstract

Selective adsorption, so called “molecular sieving”, is one of the significant functions of porous materials because it can play an important role in separation processes to obtain highly pure gases or petroleum. One of the next outstanding challenges of porous materials is the achievement of controllable “molecular sieving” in response to external environments. Here, we show a new temperature responsive 1-dimensional porous compound (CPL-11) which changes its structural uniformity in response to ambient temperature, which gives rise to changes in the effective pore size. As a result of the structural responsiveness, the seeming adsorption properties of CPL-11 are apparently opposite to conventional porous compounds expected from thermodynamic law, resulting in a highly selective adsorption for O2 compared to Ar. This unexpected adsorption behavior indicates that the adsorption properties can be controlled by changing the channel uniformity of a porous framework depending on the ambient temperature.

Graphical abstract: Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer

Supplementary files

Article information

Article type
Edge Article
Submitted
20 Apr 2010
Accepted
01 Jun 2010
First published
25 Jun 2010

Chem. Sci., 2010,1, 315-321

Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer

R. Matsuda, T. Tsujino, H. Sato, Y. Kubota, K. Morishige, M. Takata and S. Kitagawa, Chem. Sci., 2010, 1, 315 DOI: 10.1039/C0SC00272K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements