Issue 21, 2010

Combination of chiroptical, absorption and fluorescence spectroscopic methods reveals multiple, hydrophobicity-driven human serum albumin binding of the antimalarial atovaquone and related hydroxynaphthoquinone compounds

Abstract

High-affinity human serum albumin (HSA) binding of the C3-substituted antimalarial 2-hydroxy-1,4-naphthoquinone derivative atovaquone (ATQ) has been demonstrated and studied by circular dichroism (CD), UV/VIS absorption, fluorescence spectroscopy and affinity chromatography methods. The analysis of induced CD data generated upon HSA binding of ATQ revealed two high-affinity binding sites (Ka ≈ 2 × 106 M−1). CD interaction studies and displacement of specific fluorescent and radioactive marker ligands indicated the contribution of both principal drug binding sites of HSA to complexation of ATQ, and also suggested the possibility of simultaneous binding of ATQ and some other drugs (e.g. warfarin, phenylbutazone, diazepam). Comparison of UV/VIS spectra of ATQ measured in aqueous solutions indicated the prevalence of the anionic species formed by dissociation of the 2-hydroxyl group. HSA binding of related natural hydroxynaphthoquinones, lapachol and lawsone also induces similar CD spectra. The much weaker binding affinity of lawsone (Ka ≈ 104 M−1) bearing no C3 substituent highlights the importance of hydrophobic interactions in the strong HSA binding of ATQ and lapachol. Since neither drug exhibited significant binding to serum α1-acid glycoprotein, HSA must be the principal plasma protein for the binding and transportation of 2-hydroxy-1,4-naphthoquinone-type compounds which are ionized at physiological pH values.

Graphical abstract: Combination of chiroptical, absorption and fluorescence spectroscopic methods reveals multiple, hydrophobicity-driven human serum albumin binding of the antimalarial atovaquone and related hydroxynaphthoquinone compounds

Article information

Article type
Paper
Submitted
13 May 2010
Accepted
21 Jul 2010
First published
24 Aug 2010

Org. Biomol. Chem., 2010,8, 4905-4914

Combination of chiroptical, absorption and fluorescence spectroscopic methods reveals multiple, hydrophobicity-driven human serum albumin binding of the antimalarial atovaquone and related hydroxynaphthoquinone compounds

F. Zsila and I. Fitos, Org. Biomol. Chem., 2010, 8, 4905 DOI: 10.1039/C0OB00124D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements