Issue 1, 2010

GaOOH, and β- and γ-Ga2O3nanowires: preparation and photoluminescence

Abstract

A composite methodology using laser ablation followed by a solution refluxing process was demonstrated to prepare GaOOH and (β-, γ-) Ga2O3 nanowires, where GaOOH and γ-Ga2O3 nanowires were prepared for the first time. The CTAB surfactant and PVP polymer facilitated the nucleation and growth of GaOOH nanorods, and played different roles in selectively controlling the growth rates of different facets. In the PVA/CTAB-assisted reaction, a high aspect ratio (of at least 200) of GaOOH nanowires was approached. The calcination of GaOOH nanowires at a temperature of 500 °C (6 h) transformed them into γ-Ga2O3 nanowires and converted them further into β-Ga2O3 nanowires at 750 °C (18 h). Photoluminescence measurements were conducted at room temperature for the GaOOH and (β-, γ-) Ga2O3 nanowires using a high resolution synchrotron X-ray source. The blue emissions from the GaOOH and (β-, γ-) Ga2O3 nanowires were resolved into a few sharp peaks, and may provide a valuable reference for further understanding the PL mechanisms. Although luminescence spectra of the GaOOH and γ-Ga2O3 nanowires were recorded for the first time, the similar optical band gap and emission contour observed for β-Ga2O3 nanowires suggests that the optical behavior of GaOOH and γ-Ga2O3 nanowires are likely to closely follow the PL mechanisms of β-Ga2O3 nanowires.

Graphical abstract: GaOOH, and β- and γ-Ga2O3 nanowires: preparation and photoluminescence

Article information

Article type
Paper
Submitted
06 Aug 2009
Accepted
25 Sep 2009
First published
16 Oct 2009

New J. Chem., 2010,34, 103-107

GaOOH, and β- and γ-Ga2O3 nanowires: preparation and photoluminescence

C. Huang and C. Yeh, New J. Chem., 2010, 34, 103 DOI: 10.1039/B9NJ00392D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements