Issue 42, 2010

In situ video STM studies of the hydrogen-induced reconstruction of Cu(100): potential and pH dependence

Abstract

The surface structure of Cu(100) electrodes in perchloric acid solutions of pH 1 to 3 was studied in the potential range of hydrogen evolution by video-rate scanning tunneling microscopy, focusing on the recently reported hydrogen-induced surface reconstruction [H. Matsushima et al., J. Am. Chem. Soc. 2009, 131, 10362]. Potential-dependent measurements reveal a two step formation process: at potentials close to the onset of hydrogen evolution a p(1×8) phase emerges, where Cu surface atoms in stripe-like structures are laterally and vertically displaced; at ≈30 mV more negative potentials a transition to a c(p×8) structure with an expanded Cu surface lattice occurs. Correlation of these observations with electrochemical data and studies on hydrogen interactions with Cu(100) surfaces under vacuum conditions support that these phases are induced by hydrogen in subsurface sites, pointing towards a high hydrogen coverage on this electrode surface under reaction conditions.

Graphical abstract: In situ video STM studies of the hydrogen-induced reconstruction of Cu(100): potential and pH dependence

Article information

Article type
Paper
Submitted
23 May 2010
Accepted
13 Aug 2010
First published
24 Sep 2010

Phys. Chem. Chem. Phys., 2010,12, 13992-13998

In situ video STM studies of the hydrogen-induced reconstruction of Cu(100): potential and pH dependence

H. Matsushima, C. Haak, A. Taranovskyy, Y. Gründer and O. M. Magnussen, Phys. Chem. Chem. Phys., 2010, 12, 13992 DOI: 10.1039/C0CP00659A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements