Issue 10, 2010

Growth of epitaxial zirconium-doped indium oxide (222) at low temperature by rf sputtering

Abstract

Zr-doped In2O3 (Zr-In2O3) (222) epitaxial layers of thickness 210 nm were grown on yttria-stabilized zirconia (YSZ) (111) and Al2O3 (0001) substrates with rf magnetron sputtering at 350 °C in an atmosphere deficient in oxygen. X-Ray scattering and use of a transmission electron microscope (TEM) revealed Zr-In2O3 films to be deposited epitaxially on YSZ (111) and Al2O3 (0001). Images observed with an atomic-force microscope demonstrate that the substrate profoundly affected the topography of the Zr-In2O3 (222) epilayers. The large mismatch of the Zr-In2O3 (222)/Al2O3 (0001) heteroepitaxy was responsible for the surface structure of the epilayer being rougher than that on YSZ (111). Cross-sectional TEM images reveal dense crystalline films with no macroscopic imperfection; the crystalline order of Zr-In2O3 epilayers is preserved up to the top surface. The Zr-In2O3 (222)/YSZ (111) heteroepitaxy has a Hall mobility greater than that of Zr-In2O3 (222)/Al2O3 (0001), perhaps due to the greater lattice mismatch of the Zr-In2O3 (222)/Al2O3 (0001) heteroepitaxy that results in Zr-In2O3 having a poor crystalline quality. Domain boundaries on a nanometre scale were found in the heteroepitaxial Zr-In2O3 (222)/Al2O3 (0001) resulting from random nucleation and relaxation of misfit stress. The existence of these domain boundaries on a nanometre scale thus affects the electrical properties of the Zr-In2O3 epilayer.

Graphical abstract: Growth of epitaxial zirconium-doped indium oxide (222) at low temperature by rf sputtering

Article information

Article type
Paper
Submitted
22 Mar 2010
Accepted
25 May 2010
First published
17 Jun 2010

CrystEngComm, 2010,12, 3172-3176

Growth of epitaxial zirconium-doped indium oxide (222) at low temperature by rf sputtering

Y. Liang and H. Lee, CrystEngComm, 2010, 12, 3172 DOI: 10.1039/C004452K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements