Issue 6, 2009

Micropatterning of bioactive self-assembling gels

Abstract

Microscale topographical features have been known to affect cell behavior. An important target in this area is to integrate top down techniques with bottom up self-assembly to create three-dimensional (3D) patterned bioactive mimics of extracellular matrices. We report a novel approach toward this goal and demonstrate its use to study the behavior of human mesenchymal stem cells (hMSCs). By incorporating polymerizable acetylene groups in the hydrophobic segment of peptide amphiphiles (PAs), we were able to micro-pattern nanofiber gels of these bioactive materials. PAs containing the cell adhesive epitope arginineglycineaspartic acidserine (RGDS) were allowed to self-assemble within microfabricated molds to create networks of either randomly oriented or aligned ∼30 nm diameter nanofiber bundles that were shaped into topographical patterns containing holes, posts, or channels up to 8 µm in height and down to 5 µm in lateral dimensions. When topographical patterns contained nanofibers aligned through flow prior to gelation, the majority of hMSCs aligned in the direction of the nanofibers even in the presence of hole microtextures and more than a third of them maintained this alignment when encountering perpendicular channel microtextures. Interestingly, in topographical patterns with randomly oriented nanofibers, osteoblastic differentiation was enhanced on hole microtextures compared to all other surfaces.

Graphical abstract: Micropatterning of bioactive self-assembling gels

Article information

Article type
Paper
Submitted
27 Oct 2008
Accepted
19 Dec 2008
First published
23 Feb 2009

Soft Matter, 2009,5, 1228-1236

Micropatterning of bioactive self-assembling gels

A. Mata, L. Hsu, R. Capito, C. Aparicio, K. Henrikson and S. I. Stupp, Soft Matter, 2009, 5, 1228 DOI: 10.1039/B819002J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements