Issue 1, 2009

Neutral 5-nitrotetrazoles: easy initiation with low pollution

Abstract

5-Nitro-2H-tetrazole (1), 1-methyl-5-nitrotetrazole (2) and 2-methyl-5-nitrotetrazole (3) were synthesized starting from the corresponding 5-amino-substituted tetrazoles in good yields and purities. The compounds were fully characterized by analytical and spectroscopic methods and their solid state structures were determined by low temperature X-ray diffraction techniques. Due to the potential of tetrazoles as energetic materials an extensive computational study (CBS-4M) was performed in order to estimate the energies of formation (ΔfU°) of the molecules, which are highly endothermic (1, 2527 kJ kg−1; 2, 2253 kJ kg−1 and 3, 2006 kJ kg−1). The EXPLO5 software was used to calculated the corresponding detonation velocities (Ddet) and detonation pressures (pdet) (1, Ddet = 9457 m s−1 and pdet = 390 kbar; 2, Ddet = 8085 m s−1 and pdet = 257 kbar and 3, Ddet = 8109 m s−1 and pdet = 262 kbar) by combining the ΔfU° values of the materials with the (X-ray calculated) densities and molecular formulas, giving performances comparable to commonly used secondary explosives (e.g., RDX). Lastly, all three neutral compounds can be easily initiated by impact (<2 J) and with high detonation velocities and excellent combined oxygen and nitrogen contents offer a more powerful and environmentally friendly alternative to commonly used primary explosives in initiating devices.

Graphical abstract: Neutral 5-nitrotetrazoles: easy initiation with low pollution

Supplementary files

Article information

Article type
Paper
Submitted
21 Jul 2008
Accepted
08 Sep 2008
First published
24 Oct 2008

New J. Chem., 2009,33, 136-147

Neutral 5-nitrotetrazoles: easy initiation with low pollution

T. M. Klapötke, C. M. Sabaté and J. Stierstorfer, New J. Chem., 2009, 33, 136 DOI: 10.1039/B812529E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements