Issue 12, 2009

Analysis of indoor air pollution trends and characterization of infiltration delay time using a cross-correlation method

Abstract

High-density housing in close proximity to freeways in conjunction with high concentrations of traffic emissions may contribute to significant degradation of indoor air quality. Densely populated areas may also be targeted for intentional releases of biological or chemical agents because an urban release could result in higher morbidity and mortality from the attack. Since people tend to spend the majority of their time indoors, it is paramount to explore the relationships between outdoor and indoor air quality and, specifically, the time scales that characterize transport of airborne contaminants from outdoors to indoors. In the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study, a three-story row house with a flat face and roof and multiple rooms was used to investigate outdoor-to-indoor contaminant time scales. The building was located in the Sunset Park neighborhood of Brooklyn, NY, USA, in the vicinity of a major expressway and a heavily trafficked arterial road. It was found that the building shell has a profound impact on the indoor concentrations. A strong hourly periodicity (see Eisner et al., this issue, DOI: 10.1039/b907132f) in concentration outside the building during the morning “rush hour” was used as evidence to suggest that indoor contaminants originated from outdoor air penetration. Although the indoor concentrations followed a similar pattern, indoor concentrations were found to be more persistent than outdoor concentrations. Stronger persistency is used here to describe the tendency of the indoor concentration to continue to rise even if the outdoor concentration has started to drop, or vice versa. This may be an important factor in assessing negative health risks to inhabitants or first responders. A cross-correlation technique was employed to study the correlation between outdoor and indoor time series. In the high-density housing residential building used in the study, it was found that a long lag time exists (11 min) before indoor and outdoor concentrations reach maximal correlation.

Graphical abstract: Analysis of indoor air pollution trends and characterization of infiltration delay time using a cross-correlation method

Article information

Article type
Paper
Submitted
07 Apr 2009
Accepted
28 Sep 2009
First published
27 Oct 2009

J. Environ. Monit., 2009,11, 2201-2206

Analysis of indoor air pollution trends and characterization of infiltration delay time using a cross-correlation method

A. D. Eisner, J. Richmond-Bryant, I. Hahn, Z. E. Drake-Richman, L. A. Brixey, R. W. Wiener and W. D. Ellenson, J. Environ. Monit., 2009, 11, 2201 DOI: 10.1039/B907144J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements