Issue 23, 2009

Water soluble dendronized iron oxide nanoparticles

Abstract

The grafting of pegylated dendrons on 9(2) nm and 39(5) nm iron oxide nanoparticles in water, through a phosphonate group as coupling agent has been successfully achieved and its mechanism investigated, with a view to produce biocompatible magnetic nano-objects for biomedical applications. Grafting has been demonstrated to occur by interaction of negatively charged phosphonate groups with positively charged groups and hydroxyl at the iron oxide surface. The isoelectric point of the suspension of dendronized iron oxide nanoparticles is shifted towards lower pH as the amount of dendron increases. It reaches 4.7 for the higher grafting rate and for both particle size. Thus, the grafting of molecules using a phosphonate group allows stabilizing electrostatically the suspensions at physiological pH, a prerequisite for biomedical applications. Moreover the grafting step has been shown to preserve the magnetic properties of iron oxide nanoparticles due to super–super exchange interactions through the phosphonate group.

Graphical abstract: Water soluble dendronized iron oxide nanoparticles

Article information

Article type
Paper
Submitted
24 Dec 2008
Accepted
10 Mar 2009
First published
09 Apr 2009

Dalton Trans., 2009, 4442-4449

Water soluble dendronized iron oxide nanoparticles

T. J. Daou, G. Pourroy, J. M. Greneche, A. Bertin, D. Felder-Flesch and S. Begin-Colin, Dalton Trans., 2009, 4442 DOI: 10.1039/B823187G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements