Issue 26, 2009

In situXAS and IR studies on Cu:SAPO-5 and Cu:SAPO-11: the contributory role of monomeric linear copper(i) species in the selective catalytic reduction of NOx by propene

Abstract

Cu:SAPO-5 and Cu:SAPO-11 were prepared by conventional and hydrothermal ion exchange. Copper incorporation is increased six-fold by hydrothermal ion exchange relative to conventional methods. In all cases, the amount of copper taken up by SAPO-11 is superior to uptake in SAPO-5. Copper is divalent and in tetragonally-distorted octahedral environments in the as-prepared samples independent of the method of incorporation for both systems. The local structures about the metal and the valence states associated with the different steps in the selective catalytic reduction of NOx in the presence of propene (SCR-HC) have been investigated using X-ray absorption spectroscopy (XAS). For both the Cu:SAPO-5 and Cu:SAPO-11 systems, heating in helium partially autoreduces copper(II) to copper(I). Following activation in oxygen, propene causes further reduction to copper(I) in all four samples as shown by the evolution of an intense pre-edge diagnostic feature. XANES analysis reveal this to be characteristic of monomeric linear two coordinate copper(I) species. This is a prime example of a pre-edge peak with such a high intensity being observed in the solid state. This is supported by IR where peaks attributed to bidentate copper were observed for Cu:SAPO-11/HT. For all four samples NOx partially reoxidises the copper(I) formed in the helium and propene steps. Ion exchanged Cu:SAPO-5 and Cu:SAPO-11 exhibit low activity in reducing NOx by propene in an oxygen rich environment. The role of the copper ion during NO adsorption was studied using in situ infra red spectroscopy. The activity of copper exchanged materials is governed by both the degree of reducibility of copper(II) and the ease of reversing the valence states with the structural characteristics of the parent materials playing a crucial role.

Graphical abstract: In situ XAS and IR studies on Cu:SAPO-5 and Cu:SAPO-11: the contributory role of monomeric linear copper(i) species in the selective catalytic reduction of NOx by propene

Article information

Article type
Paper
Submitted
06 Feb 2009
Accepted
31 Mar 2009
First published
24 Apr 2009

Phys. Chem. Chem. Phys., 2009,11, 5476-5488

In situ XAS and IR studies on Cu:SAPO-5 and Cu:SAPO-11: the contributory role of monomeric linear copper(I) species in the selective catalytic reduction of NOx by propene

K. Mathisen, M. Stockenhuber and D. G. Nicholson, Phys. Chem. Chem. Phys., 2009, 11, 5476 DOI: 10.1039/B902491C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements