Issue 2, 2009

Dielectric saturation of water in a membrane protein channel

Abstract

Water molecules in confined geometries like nanopores and biological ion channels exhibit structural and dynamical properties very different from those found in free solution. Protein channels that open aqueous pores through biological membranes provide a complex spatial and electrostatic environment that decreases the translational and rotational mobility of water molecules, thus altering the effective dielectric constant of the pore water. By using the Booth equation, we study the effect of the large electric field created by ionizable residues of an hour-glass shaped channel, the bacterial porin OmpF, on the pore water dielectric constant, εw. We find a space-dependent significant reduction (down to 20) of εw that may explain some ad hoc assumptions about the dielectric constant of the protein and the water pore made to reconcile model calculations with measurements of permeation properties and pKa’s of protein residues. The electric potential calculations based on the OmpF protein atomic structure and the Booth field-dependent dielectric constant show that protein dielectric constants ca. 10 yield good agreement with molecular dynamics simulations as well as permeation experiments.

Graphical abstract: Dielectric saturation of water in a membrane protein channel

Article information

Article type
Paper
Submitted
25 Jul 2008
Accepted
03 Oct 2008
First published
30 Oct 2008

Phys. Chem. Chem. Phys., 2009,11, 358-365

Dielectric saturation of water in a membrane protein channel

M. Aguilella-Arzo, A. Andrio, V. M. Aguilella and A. Alcaraz, Phys. Chem. Chem. Phys., 2009, 11, 358 DOI: 10.1039/B812775A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements