Issue 4, 2009

Hexamine copper(II) coordination polymers: synthesis, structure and magnetic properties

Abstract

Four new one-dimensional (1D) polymeric complexes, {[Cu4(L1)2(µ-Br)24-CO3)]Br(ClO4)3·3H2O}n (1), {[Cu2L2(µ-Cl)Cl2] (ClO4)2·H2O}n (2), {[Cu2L3(µ-Cl)2](ClO4)2}n (3), and {[Cu2L4(µ-Cl)2](ClO4)2}n (4), have been synthesized and characterized, where L1 = N,N,N′,N′-tetrakis(3′-aminopropyl)-1,3-propylenediamine, L2 = N,N,N′,N′-tetrakis(2′-aminoethyl)-1,3-propylenediamine, L3 = N,N,N′,N′-tetrakis(2′-aminoethyl)-1,4-butylenediamine, L4 = N,N,N′,N′-tetrakis(2′-aminoethyl)-1, 6-hexylenediamine. X-Ray structure analysis revealed that the polymeric complexes, created by the bridging groups which are exhibited in the formula, present different 1D coordination motifs: double-stranded chains with voids of 43.5 Å2 for 1, sigmoid chains for 2, zigzag chains for 3 and 4 with different coordination polyhedra. Various hydrogen bonding interactions such as N–H⋯Cl, N–H⋯O, C–H⋯Cl, N–H⋯Br and O–H⋯Br join the polymeric chains to generate two-dimensional networks with bigger voids. Magnetic susceptibility data were fitted according to the molecular structures using Hamiltonians: H = −2J1(S2S3 + S1S4) − 2J2(S2S1) − 2J3(S1S3 + S2S4) − 2J4(S3S4), which corresponds to a rectangular array of spins for 1, and H = −2JS1S2 corresponds to a dinuclear array of spins for 2, 3 and 4. It was found that the coupling constants of 1 are −60, −113, −54 and −11 cm−1, and those of 2, 3, and 4 are −2.46, −1.56 and −0.15 cm−1, respectively.

Graphical abstract: Hexamine copper(II) coordination polymers: synthesis, structure and magnetic properties

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2008
Accepted
19 Nov 2008
First published
07 Jan 2009

CrystEngComm, 2009,11, 671-679

Hexamine copper(II) coordination polymers: synthesis, structure and magnetic properties

H. Zhou, L. Chen, R. Chen, Z. Peng, Y. Song, Z. Pan, Q. Huang, X. Hu and Z. Bai, CrystEngComm, 2009, 11, 671 DOI: 10.1039/B820108K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements