Issue 4, 2008

Artificial cilia for active micro-fluidic mixing

Abstract

In lab-on-chip devices, on which complete (bio-)chemical analysis laboratories are miniaturized and integrated, it is essential to manipulate fluids in sub-millimetre channels and sub-microlitre chambers. A special challenge in these small micro-fluidic systems is to create good mixing flows, since it is almost impossible to generate turbulence. We propose an active micro-fluidic mixing concept inspired by nature, namely by micro-organisms that swim through a liquid by oscillating microscopic hairs, cilia, that cover their surface. We have fabricated artificial cilia consisting of electro-statically actuated polymer structures, and have integrated these in a micro-fluidic channel. Flow visualization experiments show that the cilia can generate substantial fluid velocities, up to 0.6 mm sāˆ’1. In addition, very efficient mixing is obtained using specially designed geometrical cilia configurations in a micro-channel. Since the artificial cilia can be actively controlled using electrical signals, they have exciting applications in micro-fluidic devices.

Graphical abstract: Artificial cilia for active micro-fluidic mixing

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2007
Accepted
05 Feb 2008
First published
04 Mar 2008

Lab Chip, 2008,8, 533-541

Artificial cilia for active micro-fluidic mixing

J. D. Toonder, F. Bos, D. Broer, L. Filippini, M. Gillies, J. de Goede, T. Mol, M. Reijme, W. Talen, H. Wilderbeek, V. Khatavkar and P. Anderson, Lab Chip, 2008, 8, 533 DOI: 10.1039/B717681C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements