Issue 3, 2008

Ionic liquids: prediction of their melting points by a recursive neural network model

Abstract

A recursive neural network (RNN) was used to predict the melting points of several pyridinium-based ionic liquids (ILs). The RNN is a neural network model for processing structured data that allows for the direct handling of chemical compounds as labelled rooted ordered trees. It constitutes a direct approach to quantitative structure–property relationship (QSPR) of ILs, which avoids the use of dedicated molecular descriptors. The adopted representation of molecular structures captures significant topological aspects and chemical functionalities for each molecule in a general and flexible way. Particular emphasis was given to the representation of cyclic moieties. The model was applied to a set of 126 pyridinium bromides; it was validated by splitting the dataset into a disjoint training set (100 compounds) and test set (26 compounds). Comparison with the results obtained by other QSPR approaches on the same dataset is also presented.

Graphical abstract: Ionic liquids: prediction of their melting points by a recursive neural network model

Supplementary files

Article information

Article type
Paper
Submitted
30 May 2007
Accepted
11 Dec 2007
First published
08 Jan 2008

Green Chem., 2008,10, 306-309

Ionic liquids: prediction of their melting points by a recursive neural network model

R. Bini, C. Chiappe, C. Duce, A. Micheli, R. Solaro, A. Starita and M. R. Tiné, Green Chem., 2008, 10, 306 DOI: 10.1039/B708123E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements