Fluid bridges confined between chemically nanopatterned solid substrates
Abstract
We discuss equilibrium properties of classical fluids confined to nanoscopic volumes by solid substrates. The substrates themselves are endowed with wettable chemical patterns of variable symmetry. We develop a thermodynamic description suitable for these highly anisotropic systems. Based upon a combination of Monte Carlo simulations in the grand canonical ensemble and lattice density functional theory at mean-field level we analyze the structure and phase behaviour of the confined fluid. Under suitable thermodynamic conditions the fluid may condense partially in regions controlled by the wettable nanopatterns. The resulting fluid bridges are established as thermodynamic phases and exhibit unique rheological features.