Issue 16, 2007

Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy

Abstract

We report facile fabrication of advanced hybrid silica–spinel iron oxide (maghemite) composite microspheres built with both superparamagnetic nanoparticles for MR imaging, hyperthermia, and a hybrid mesoporous matrix enabling the transport of bioactive molecules for in vivo biomedical applications. Elaboration of such multifunctional platforms is performed by spray drying a sol of tunable composition that allows one to control the size and amount of magnetic particles embedded in the matrix, without aggregation, and to adjust the size and the surface chemical properties of the porous silica cavities. The resulting nanocomposites (γ-Fe2O3 8 nm particles in silica matrices from TEOS templated by CTAB or P123, without or with functionalisation with –Ph, –SH or –NH2) were characterised by chemical analysis, XRD, TEM, BET, FTIR and magnetisation measurements. Tests of the materials both as MRI T2-contrast agents and as heating sources of hyperthermia are presented in support of potential applications in diagnosis and therapy.

Graphical abstract: Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy

Supplementary files

Article information

Article type
Paper
Submitted
01 Nov 2006
Accepted
25 Jan 2007
First published
16 Feb 2007

J. Mater. Chem., 2007,17, 1563-1569

Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy

B. Julián-López, C. Boissière, C. Chanéac, D. Grosso, S. Vasseur, S. Miraux, E. Duguet and C. Sanchez, J. Mater. Chem., 2007, 17, 1563 DOI: 10.1039/B615951F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements