Following new insights on non-traditional peroxyl radical chemistry, we present an update to our earlier OH-initiated α-pinene degradation mechanism (Peeters et al., Phys. Chem. Chem. Phys., 2001, 3, 5489), incorporating ring closure reactions and a fast H-shift isomerization in certain key peroxyl and oxy radical intermediates. These changes, affecting only a single branch of the comprehensive mechanism and based on extensive quantum-chemical and theoretical kinetic calculations, show significant formation, ∼20% overall, of poly-oxygenated (hydro)peroxides in atmospheric conditions. These low-volatility compounds are expected to have a significant impact on aerosol formation, and are believed to be the high-mass product compounds observed in available experimental work. The proposed changes also affect the predicted acetone yield, matching the experimental data closely.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?