Issue 12, 2006

Time-resolved methods in Biophysics. 2. Monitoring haem proteins at work with nanosecond laser flash photolysis

Abstract

Haem proteins have long been the most studied proteins in biophysics, and have become paradigms for the characterization of fundamental biomolecular processes as ligand binding and regulatory conformational transitions. The presence of the haem prosthetic group, the absorbance spectrum of which has a ligation sensitive region conveniently located in the UV-visible range, has offered a powerful and sensitive tool for the investigation of molecular functions. The central Fe atom is capable of reversibly binding diatomic ligands, including O2, CO, and NO. The Fe-ligand bond is photolabile, and a reactive unligated state can be transiently generated with a pulsed laser. The photodissociated ligands quickly rebind to the haem and the process can be monitored by transient absorbance methods. The ligand rebinding kinetics reflects protein dynamics and ligand migration within the protein inner cavities. The characterization of these processes was done in the past mainly by low temperature experiments. The use of silica gels to trap proteins allows the characterization of internal ligand dynamics at room temperature. In order to show the potential of the laser flash photolysis techniques, combined with modern numerical analysis methods, we report experiments conducted on two non-symbiotic haemoglobins from Arabidopsis thaliana. The comparison between time courses recorded on haemoglobins in solution and encapsulated in silica gels allows for the highlighting of different interplays between protein dynamics and ligand migration.

Graphical abstract: Time-resolved methods in Biophysics. 2. Monitoring haem proteins at work with nanosecond laser flash photolysis

Article information

Article type
Perspective
Submitted
18 Jul 2006
Accepted
25 Sep 2006
First published
18 Oct 2006

Photochem. Photobiol. Sci., 2006,5, 1109-1120

Time-resolved methods in Biophysics. 2. Monitoring haem proteins at work with nanosecond laser flash photolysis

S. Abbruzzetti, S. Bruno, S. Faggiano, E. Grandi, A. Mozzarelli and C. Viappiani, Photochem. Photobiol. Sci., 2006, 5, 1109 DOI: 10.1039/B610236K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements