Issue 23, 2006

The {FeIII[FeIII(L1)2]3} star-type single-molecule magnet§

Abstract

Star-shaped complex {FeIII[FeIII(L1)2]3} (3) was synthesized starting from N-methyldiethanolamine H2L1 (1) and ferric chloride in the presence of sodium hydride. For 3, two different high-spin iron(III) ion sites were confirmed by Mössbauer spectroscopy at 77 K. Single-crystal X-ray structure determination revealed that 3 crystallizes with four molecules of chloroform, but, with only three molecules of dichloromethane. The unit cell of 3·4CHCl3 contains the enantiomers (Δ)-[(S,S)(R,R)(R,R)] and (Λ)-[(R,R)(S,S)(S,S)], whereas in case of 3·3CH2Cl2 four independent molecules, forming pairs of the enantiomers [Λ-(R,R)(R,R)(R,R)]-3 and [Δ-(S,S)(S,S)(S,S)]-3, were observed in the unit cell. According to SQUID measurements, the antiferromagnetic intramolecular coupling of the iron(III) ions in 3 results in a S = 10/2 ground state multiplet. The anisotropy is of the easy-axis type. EPR measurements enabled an accurate determination of the ligand-field splitting parameters. The ferric star 3 is a single-molecule magnet (SMM) and shows hysteretic magnetization characteristics below a blocking temperature of about 1.2 K. However, weak intermolecular couplings, mediated in a chainlike fashion via solvent molecules, have a strong influence on the magnetic properties. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were used to determine the structural and electronic properties of star-type tetranuclear iron(III) complex 3. The molecules were deposited onto highly ordered pyrolytic graphite (HOPG). Small, regular molecule clusters, two-dimensional monolayers as well as separated single molecules were observed. In our STS measurements we found a rather large contrast at the expected locations of the metal centers of the molecules. This direct addressing of the metal centers was confirmed by DFT calculations.

Graphical abstract: The {FeIII[FeIII(L1)2]3} star-type single-molecule magnet

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2005
Accepted
21 Feb 2006
First published
02 May 2006

Dalton Trans., 2006, 2865-2874

The {FeIII[FeIII(L1)2]3} star-type single-molecule magnet

R. W. Saalfrank, A. Scheurer, I. Bernt, F. W. Heinemann, A. V. Postnikov, V. Schünemann, A. X. Trautwein, M. S. Alam, H. Rupp and P. Müller, Dalton Trans., 2006, 2865 DOI: 10.1039/B515980F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements