Issue 10, 2006

Vibrational and thermodynamic properties of Ar, N2, O2, H2 and CO adsorbed and condensed into (H,Na)-Y zeolite cages as studied by variable temperature IR spectroscopy

Abstract

The adsorption of Ar, H2, O2, N2 and CO on (H,Na)-Y zeolite (Si/Al = 2.9, H+/Na+ ≈ 5) has been studied at variable-temperature (90–20 K) and sub-atmospheric pressure (0–40 mbar) by FTIR spectroscopy. Unprecedented filling conditions of the zeolite cavities were attained, which allowed the investigation of very weakly adsorbed species and of condensed, liquid-like or solid-like, phases. Two pressure regimes were singled out, characterized by: (i) specific interaction at low pressure of the probe molecules (P) with the internal Brønsted and Lewis sites, and (ii) multilayer adsorption at higher pressure. In the case of CO the perturbation of the protonic sites located inside the sodalite cages was also observed. As the molecule is too large to penetrate the sodalite cage, the perturbation is thought to involve a proton jump tunneling mechanism. The adsorption energy for the (HF)OH⋯P (P = Ar, H2, O2, N2 and CO) specific interaction involving the high frequency Brønsted acid sites exposed in the supercages was derived following the VTIR (variable temperature infrared spectroscopy) method described by E. Garrone and C. Otero Areán (Chem. Soc. Rev., 2005, 34, 846).

Graphical abstract: Vibrational and thermodynamic properties of Ar, N2, O2, H2 and CO adsorbed and condensed into (H,Na)-Y zeolite cages as studied by variable temperature IR spectroscopy

Article information

Article type
Paper
Submitted
20 Sep 2005
Accepted
05 Dec 2005
First published
04 Jan 2006

Phys. Chem. Chem. Phys., 2006,8, 1186-1196

Vibrational and thermodynamic properties of Ar, N2, O2, H2 and CO adsorbed and condensed into (H,Na)-Y zeolite cages as studied by variable temperature IR spectroscopy

E. N. Gribov, D. Cocina, G. Spoto, S. Bordiga, G. Ricchiardi and A. Zecchina, Phys. Chem. Chem. Phys., 2006, 8, 1186 DOI: 10.1039/B513367J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements