The self-assembly of two novel intramolecular hydrogen bonding-driven foldamers is described. Two linear symmetric aromatic amide oligomers, 1 and 2, which are incorporated with benzene subunits, have been prepared by continuous amide-coupling reactions. The existence of three-centred hydrogen bonds in the oligomers and consequently the folding conformation of the oligomers in solution have been characterized by 1H NMR experiments and by comparing them with the reported solid state structure of the identical structural skeleton. Molecular modeling reveals a rigid crescent conformation for 1 with a cavity of ca. 0.9 nm in diameter and a helical conformation for 2 with a cavity of ca. 0.8 nm in diameter. Due to the existence of intramolecular hydrogen bonding, all the C
O groups in both oligomers are located inwardly. The binding of 1 and 2 towards a trihydroxyl guest and four saccharide derivatives have been investigated with 1H NMR, fluorescence, and circular dichroism spectroscopy. The association constants of the corresponding 1 ∶ 1 complexes have been determined by fluorescence titration experiments.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?