Issue 6, 2005

The effect of pyridinecarboxylate chelating groups on the stability and electronic relaxation of gadolinium complexes

Abstract

The ligand N,N′-bis[(6-carboxy-2-pyridylmethyl]ethylenediamine-N,N′-diacetic acid (H4bpeda) was synthesised using an improved procedure which requires a reduced number of steps and leads to a higher yield with respect to the published procedure. It was obtained in three steps from diethylpyridine-2,6-dicarboxylate and commercially available ethylenediamine-N,N′-diacetic acid with a total yield of ∼20%. The crystal structure of the hexa-protonated form of the ligand which was determined by X-ray diffraction shows that the four carboxylates and the two amines are protonated. The crystal structure of the polynuclear complex [Gd(bpeda)(H2O)2]3[Gd(H2O)6]2Cl3 (2), isolated by slow evaporation of a 1 ∶ 1 mixture of GdCl3 and H4bpeda at pH ∼ 1, was determined by X-ray diffraction. In complex 2 three [Gd(bpeda)(H2O)2] units, containing a Gd(III) ion ten-coordinated by the octadentate bpeda and two water molecules, are connected in a pentametallic structure by two hexa-aquo Gd3+ cations through four carboxylato bridges. The protonation constants (pKa1 = 2.9(1), pKa2 = 3.5(1), pKa3 = 5.2(2), and pKa4 = 8.5(1)) and the stability constants of the complexes formed between Gd(III) and Ca(II) ions and H4bpeda (log βGdL = 15.1(3); log βCaL = 9.4(1)) were determined by potentiometric titration. The unexpected decrease in the stability of the gadolinium complex and of the calcium complex of the octadentate ligand bpeda4− with respect to the hexadentate ligand edta4− has been interpreted in terms of an overall lower contribution to stability of the metal-nitrogen interactions. The EPR spectra display very broad lines (apparent ΔHpp ∼800–1200 G at X-band and 90–110 G at Q-band depending on the temperature), indicating a rapid transverse electron spin relaxation. At X-band, Gd(bpeda) is among the fastest relaxing Gd3+ complexes to date suggesting that the presence of pyridinecarboxylate chelating groups in itself does not lead to slow electron relaxation.

Graphical abstract: The effect of pyridinecarboxylate chelating groups on the stability and electronic relaxation of gadolinium complexes

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2004
Accepted
26 Jan 2005
First published
10 Feb 2005

Dalton Trans., 2005, 1129-1135

The effect of pyridinecarboxylate chelating groups on the stability and electronic relaxation of gadolinium complexes

N. Chatterton, C. Gateau, M. Mazzanti, J. Pécaut, A. Borel, L. Helm and A. Merbach, Dalton Trans., 2005, 1129 DOI: 10.1039/B416150E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements