Issue 24, 2004

Water-soluble hydroxyalkylated phosphines: examples of their differing behaviour toward ruthenium and rhodium

Abstract

The reaction of P(CH2OH)3 (I) and P(C6H5)(CH2OH)2 (II) with RuCl3 in methanol eliminates two equivalents of formaldehyde to yield the mixed tertiary and secondary phosphine complexes all-trans-[RuCl2(P(CH2OH)3)2(P(CH2OH)2H)2] (1) and [RuCl2(P(C6H5)(CH2OH)2)2(P(C6H5)(CH2OH)H)2] (2), respectively. There is a high degree of hydrogen-bonding interactions between the hydroxymethyl groups in 1 and 2, although the phenyl groups of the latter reduce the extent of the network compared to 1. The generation of these mixed secondary and tertiary phosphine complexes is unprecedented. Under the same reaction conditions, the tris(hydroxypropyl)phosphine III formed no ruthenium complex. The reaction of P(CH2OH)3, P(C6H5)(CH2OH)2 and P{(CH2)3OH}3 with [RhCl(1,5-cod)]2 in an aqueous/dichloromethane biphasic medium yielded [RhH2(P(CH2OH)3)4]+ (3), [RhH2(P(C6H5)(CH2OH)2)4]+ (4) and [Rh(P(C6H5)(CH2OH)2)4]+ (5) and [Rh(P{(CH2)3OH}3)4]+ (6), respectively. Treating 5 with dihydrogen rapidly gave 4. The hydroxypropyl compound 6 formed the corresponding dihydride much more slowly in aqueous solution, although [RhH2(P{(CH2)3OH}3)4]+ (7) was readily formed by reaction with dihydrogen. Two separate reaction pathways are therefore involved; for P(CH2OH)3 and to a lesser extent P(C6H5)(CH2OH)2, the hydride source in the product is likely to be the aqueous solvent or the hydroxyl protons, whilst for P{(CH2)3OH}3 an oxidative addition of H2 is favoured. The protic nature of 3 and 4 was illustrated by the H–D exchange observed in d2-water. Dihydrides 3 and 4 reacted with carbon monoxide to yield the dicarbonyl cations [Rh(CO)2(P(CH2OH)3)3]+ (8) and [Rh(CO)2(P(C6H5)(CH2OH)2)3]+ (9). The analogous experiment with [RhH2(P{(CH2)3OH}3)4]+ resulted in phosphine exchange, although our experimental evidence points to the possibility of more than one fluxional process in solution.

Graphical abstract: Water-soluble hydroxyalkylated phosphines: examples of their differing behaviour toward ruthenium and rhodium

Supplementary files

Article information

Article type
Paper
Submitted
30 Jul 2004
Accepted
18 Oct 2004
First published
16 Nov 2004

Dalton Trans., 2004, 4202-4208

Water-soluble hydroxyalkylated phosphines: examples of their differing behaviour toward ruthenium and rhodium

L. J. Higham, M. K. Whittlesey and P. T. Wood, Dalton Trans., 2004, 4202 DOI: 10.1039/B411701H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements