Issue 12, 2003

In situDRIFTS study of picolineoxidation over CrV0.95P0.05O4catalyst

Abstract

The catalytic behaviour of CrV0.95P0.05O4 has been investigated in the selective oxidations of 2-, 3- and 4-picolines by in situ DRIFTS, and the model of picoline adsorption and the oxidation mechanism are proposed. Both Lewis and Brønsted acid sites were detected on the surface of CrV0.95P0.05O4, and the number of the latter increased on the addition of steam in the reaction mixture, resulting in enhanced activity for selective oxidations. The enhanced activity due to water addition is interpreted by the fact that Brønsted acid sites are produced by the hydrolysis of V–O–Cr and activate picoline molecules by withdrawing the electrons of the pyridine ring, and at the same time, enable to accelerate the desorption of the acid products from the catalyst surface. Every 2-, 3- and 4-picoline was adsorbed on the catalyst surface via the N atom donating the electrons to the Brønsted acid sites, and the substituted methyl group was oxidized via hydrogen abstraction by surface oxide ion to form the radical intermediate, followed by oxygen insertion to produce the corresponding aldehyde and then acid. Even in the absence of gaseous oxygen, the oxygenated products were formed and observed over the catalyst surface by in situ DRIFTS. Thus, a Mars and van Krevelen mechanism was suggested for 2-, 3- and 4-picolines oxidations based on the spectral analysis. Both 2- and 4-picolines were more quickly oxidized than 3-picoline due to the inductive hyper-conjugative effect of nitrogen, resulting in an easy leaving of proton from the methyl group. 4-Picoline produced almost quantitatively isonocotinic acid, while 2-picoline afforded 2-picoline aldehyde as the main product due to the unstability of the acid product, i.e., the decarboxylation of picolinic acid took place to form pyridine.

Article information

Article type
Paper
Submitted
06 Mar 2003
Accepted
02 May 2003
First published
22 May 2003

Phys. Chem. Chem. Phys., 2003,5, 2710-2718

In situ DRIFTS study of picoline oxidation over CrV0.95P0.05O4 catalyst

T. Shishido, Z. Song, T. Matsushita, K. Takaki and K. Takehira, Phys. Chem. Chem. Phys., 2003, 5, 2710 DOI: 10.1039/B302571C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements