Issue 6, 2003

Microelectrochemical sensors for in vivo brain analysis: an investigation of procedures for modifying Pt electrodes using Nafion®

Abstract

Various Nafion® coating procedures were examined in order to design a simple and reproducible coating method to maximise permselective characteristics, and thus eliminate signals from electroactive interferents, in sensors designed for direct in vivo measurements in the brain. Interferents investigated included ascorbic acid (AA), the principal endogenous electroactive interferent present in the brain, and uric acid. Application of the Nafion® (5% commercial solution) using a thermally annealing procedure involving 5 pre-coats, and 2 subsequent dip-bake layers resulted in elimination of interferent signals. It also produced complete blocking of the signal for the neurotransmitter dopamine. The optimum time and temperature for annealing was found to be 5 min at 210 °C. An examination of shelf life over two weeks indicated negligible AA interference over this period. Preliminary investigations with respect to the potential use of these Nafion®-modified Pt electrodes in the design of implantable, first generation, peroxide detecting biosensors indicated that the modified electrode had no effect on O2 permeability but did produce a significant decrease in H2O2 sensitivity. While this may preclude their use in biosensor development they may be more suitable for detection of gaseous neurochemicals such as nitric oxide.

Article information

Article type
Paper
Submitted
09 Jan 2003
Accepted
26 Feb 2003
First published
03 Apr 2003

Analyst, 2003,128, 700-705

Microelectrochemical sensors for in vivo brain analysis: an investigation of procedures for modifying Pt electrodes using Nafion®

F. O. Brown and J. P. Lowry, Analyst, 2003, 128, 700 DOI: 10.1039/B300266G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements