Issue 12, 2002

Synthesis of perylene–porphyrin building blocks and rod-like oligomers for light-harvesting applications

Abstract

We present the synthesis of four perylene–porphyrin building blocks for use in Glaser, Sonogashira, or Suzuki polymerizations. The building blocks bear synthetic handles (4-ethynylphenyl, 4-iodophenyl, bromo) at the trans (5,15) meso-positions of a zinc porphyrin and contain two or four perylene-monoimide dyes attached at the 3,5-positions of the non-linking meso-aryl rings of the porphyrin. Each perylene-monoimide bears three 4-tert-butylphenoxy substituents (at the 1-, 6-, and 9-positions) and two isopropyl groups (on the N-aryl unit) for increased solubility. In each case the intervening linker is a diarylethyne unit that bridges the N-imide position of the perylene and the meso-position of the porphyrin. The perylene–porphyrin building blocks were prepared by (1) reaction of a diperylene-dipyrromethane with an aldehyde yielding a trans-A2B2-porphyrin, (2) reaction of a diperylene-aldehyde with a dipyrromethane yielding a trans-A2B2-porphyrin, and (3) reaction of a diperylene-dipyrromethane with a dipyrromethane-dicarbinol yielding a trans-AB2C-porphyrin or ABCD-porphyrin. The building blocks were subjected to Glaser, Sonogashira, or Suzuki coupling conditions in an effort to prepare oligomers containing porphyrins joined via 4,4′-diphenylbutadiyne (dpb), 4,4′-diphenylethyne (dpe), or 1,4-phenylene linkers (p), respectively. Each porphyrin in the backbone bears two or four pendant perylene-monoimide dyes. The Glaser and Sonogashira reactions afforded a distribution of oligomers, whereas the Suzuki reaction was unsuccessful. The oligomers were soluble in solvents such as toluene, THF, or CHCl3 enabling routine handling. The use of perylenes results in (1) increased light-harvesting efficiency particularly in the green spectral region where porphyrins are relatively transparent and (2) greater solubility than is achieved with the use of porphyrins alone. The soluble perylene–porphyrin oligomers are attractive for use as light-harvesting materials in molecular-based solar cells.

Graphical abstract: Synthesis of perylene–porphyrin building blocks and rod-like oligomers for light-harvesting applications

Supplementary files

Article information

Article type
Paper
Submitted
12 Jun 2002
Accepted
15 Aug 2002
First published
07 Oct 2002

J. Mater. Chem., 2002,12, 3438-3451

Synthesis of perylene–porphyrin building blocks and rod-like oligomers for light-harvesting applications

R. S. Loewe, K. Tomizaki, W. J. Youngblood, Z. Bo and J. S. Lindsey, J. Mater. Chem., 2002, 12, 3438 DOI: 10.1039/B205680A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements