Issue 2, 2002

Metabolic trajectory characterisation of xenobiotic-induced hepatotoxic lesions using statistical batch processing of NMR data

Abstract

Multivariate statistical batch processing (BP) analysis of 1H NMR urine spectra was employed to establish time-dependent metabolic variations in animals treated with the model hepatotoxin, α-naphthylisothiocyanate (ANIT). ANIT (100 mg kg−1) was administered orally to rats (n = 5) and urine samples were collected from dosed and matching control rats at time-points up to 168 h post-dose. Urine samples were measured via1H NMR spectroscopy and partial least squares (PLS) based batch processing analysis was used to interpret the spectral data, treating each rat as an individual batch comprising a series of timed urine samples. A model defining the mean urine profile over the 7 day study period was established, together with model confidence limits (±3 standard deviation), for the control group. Samples obtained from ANIT treated animals were evaluated using the control model. Time-dependent deviations from the control model were evident in all ANIT treated animals consisting of glycosuria, bile aciduria, an initial decrease in taurine levels followed by taurinuria and a reduction of tricarboxylic acid cycle intermediate excretion. BP provided an efficient means of visualising the biochemical response to ANIT in terms of both inter-animal variation and net variation in metabolite excretion profiles. BP also allowed multivariate statistical limits for normality to be established and provided a template for defining the sequence of time-dependent metabolic consequences of toxicity in NMR based metabonomic studies.

Article information

Article type
Paper
Submitted
16 Oct 2001
Accepted
13 Dec 2001
First published
21 Jan 2002

Analyst, 2002,127, 271-276

Metabolic trajectory characterisation of xenobiotic-induced hepatotoxic lesions using statistical batch processing of NMR data

J. Azmi, J. L. Griffin, H. Antti, R. F. Shore, E. Johansson, J. K. Nicholson and E. Holmes, Analyst, 2002, 127, 271 DOI: 10.1039/B109430K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements