Issue 3, 2001

An optimised single-reagent method for the speciation of chromium by flame atomic absorption spectrometry based on surfactant micelle-mediated methodology

Abstract

The toxicity of chromium in the environment is dependent on the species in which it exists. This paper outlines a method for the analysis of the oxidation states of Cr employing a suitable chelating agent and the cloud point phenomenon for Cr(VI) and total Cr analysis. The method involves preconcentration of metal chelates followed by air–acetylene flame atomic absorption spectrometric analysis. The chelating agent chosen for this task is the ammonium pyrrolidinedithiocarbamate, which reacts with either Cr(VI) or total Cr under specific experimental conditions. The condensed surfactant phase with the metal chelate(s) is introduced into a flame atomic absorption spectrometer, whereby discrimination of Cr species is feasible by calculating the Cr(III) concentration from the difference between total Cr and Cr(VI). A multivariate design was employed to study the variables affecting the overall analytical performance for total Cr assay. The analytical curves are rectilinear up to 100 μg l−1 for both oxidation states of the metal. The limits of detection are 0.6 μg l−1 and the relative standard deviation (n = 5) at a concentration of 30 μg l−1 for both species is around 2.0%. The method was validated by analysing BCR 544 reference material certified for both Cr species. High recoveries in the range 96–107% were attained for the environmental and biological samples tested.

Article information

Article type
Paper
Submitted
27 Nov 2000
Accepted
16 Jan 2001
First published
21 Feb 2001

Analyst, 2001,126, 389-393

An optimised single-reagent method for the speciation of chromium by flame atomic absorption spectrometry based on surfactant micelle-mediated methodology

E. K. Paleologos, C. D. Stalikas and M. I. Karayannis, Analyst, 2001, 126, 389 DOI: 10.1039/B009521B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements