Issue 3, 2001

Metal triggered fluorescence sensing of citrate using a synthetic receptor

Abstract

A metal containing fluorescent chemosensor was designed, synthesized, and studied for the quantification of citrate in common beverages. The sensor consists of Cu(II) bound by a 1,10-phenanthroline ligand which is attached to a bis(aminoimidazolium) receptor (5). Receptor 5 was designed such that binding of the metal creates an additional binding site for citrate. This additional binding interaction was found to increase the metal and citrate binding constants in a cooperative manner, yielding a minimum 2.0 fold increase in the citrate binding constant and a minimum 2.0 fold increase in the Cu(II) binding constant. Further, 5 was designed so that binding of Cu(II) quenches a photo-excited state of the 1,10-phenanthroline fluorophore. Thus, addition of citrate to 5–Cu(II) resulted in an increase of the fluorescence of the system. The nature of the fluorescence modulation upon citrate binding was probed using a model compound (6–Cu(II)). The data support an increase of electron density on the metal due to the donating ability of a carboxylate anion of citrate. In a sensing assay, the receptor is effective for measuring citrate concentrations in the micromolar range in highly competitive media. We believe this is the first demonstration of anion sensing in which the fluorescence emission is modulated due to a perturbation in the metal quenching effect upon analyte binding.

Graphical abstract: Metal triggered fluorescence sensing of citrate using a synthetic receptor

Supplementary files

Article information

Article type
Paper
Submitted
27 Oct 2000
Accepted
02 Jan 2001
First published
16 Feb 2001

J. Chem. Soc., Perkin Trans. 2, 2001, 315-323

Metal triggered fluorescence sensing of citrate using a synthetic receptor

L. A. Cabell, M. D. Best, J. J. Lavigne, S. E. Schneider, D. M. Perreault, M. Monahan and E. V. Anslyn<img border="0" src="https://www.rsc.org/images/entities/char_200a.gif" alt=" " xmlns="http://www.rsc.org/schema/rscart38" />, J. Chem. Soc., Perkin Trans. 2, 2001, 315 DOI: 10.1039/B008694K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements