Issue 1, 2001

Microfabricated reactors for on-chip heterogeneous catalysis

Abstract

Microfabricated devices constructed from glass and polydimethylsiloxane with integral heaters are described, which can be used for heterogeneous catalysis reactions. Sulfated zirconia is used as the catalyst in an open channel reactor, with either a syringe pump or electroosmotic flow being used to deliver the reactants. The results clearly demonstrate that very high conversion efficiencies are possible, however, the thermodynamics of the reactions are the same as in bulk systems. Ethanol and hexanol are dehydrated to ethene and hexene, respectively, with conversion efficiencies approaching 100%, and the esterification of ethanol is investigated. Yields of approximately 30% ethyl acetate are obtained by gas chromatographic analysis. This is the first time such a method for fabricating a catalyst micro reactor has been reported, yet it demonstrates sufficient robustness and resistance to leakage. The use of electroosmotic flow in a heated catalyst reactor is a significant advancement in reactor design.

Article information

Article type
Paper
Submitted
06 Sep 2000
Accepted
24 Nov 2000
First published
18 Dec 2000

Analyst, 2001,126, 21-23

Microfabricated reactors for on-chip heterogeneous catalysis

T. McCreedy and N. G. Wilson, Analyst, 2001, 126, 21 DOI: 10.1039/B007223K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements