Volume 116, 2000

Layer-by-layer electrostatic deposition of biomolecules on surfaces for molecular recognition, redox mediation and signal generation

Abstract

Layer-by-layer supramolecular structures composed of alternate layers of negatively charged enzymes and cationic redox polyelectrolyte have been assembled. Glucose oxidase (GOx), lactate oxidase (LOx) and soybean peroxidase (SBP) have been electrically wired to the underlying electrode by means of poly(allylamine) with [Os(bpy)2ClPyCOH]+ covalently attached (PAA–Os) in organized structures with high spatial resolution. Biotinylated glucose oxidase has also been used to assemble step-by-step on antibiotin goat immunoglobulin (IgG) layers and the enzyme was electrically wired by PAA–Os. These spatially organized multilayers with mono- and bienzymatic schemes can work efficiently in molecular recognition, redox mediation and generation of an electrical signal. The concentration of redox mediator integrated into the multilayers, obtained from the voltammetric charge and an estimation of the layer thickness, exceeds by 100-fold the amount of deposited enzyme assessed by quartz crystal microbalance. Differences in GOx electrical wiring efficiency have been detected with the different assembling strategies. The surface concentration of electrically wired enzyme represents a small proportion of all the enzyme molecules present in the multilayers which can be oxidized by the soluble mediator [Os(bpy)2Cl PyCOOH]Cl. This proportion, as well as the rate of FADH2 oxidation by PAA–Os, increases with the number of electrically wired enzyme layers and with the spatial accessibility of the Os moiety to the enzyme active center.

Article information

Article type
Paper
Submitted
29 Feb 2000
First published
25 May 2000

Faraday Discuss., 2000,116, 47-65

Layer-by-layer electrostatic deposition of biomolecules on surfaces for molecular recognition, redox mediation and signal generation

E. J. Calvo, F. Battaglini, C. Danilowicz, A. Wolosiuk and M. Otero, Faraday Discuss., 2000, 116, 47 DOI: 10.1039/B001665I

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements