Issue 15, 1999

Thin film properties and surface morphology of metal free phthalocyanine films grown by organic molecular beam deposition

Abstract

The structure, optical properties and surface morphology of thin films of metal free phthalocyanine (H2Pc) deposited in an ultra-high vacuum environment by organic molecular beam deposition have been studied using a variety of ex-situ techniques. The growth conditions have a strong influence on the properties of the films. H2Pc undergoes a phase transition (α→β) at a deposition temperature of ∽330°C, or upon post annealing a film grown at room temperature. Both the structure and optical properties of the films change and powder X-ray diffraction, electronic absorption spectroscopy, Raman and photoluminescence spectroscopies are used to characterise the differences between the two phases. Atomic force microscopy and Nomarski interference microscopy show that the lower temperature α-phase is characterised by a smooth morphology with spherical islands that show no apparent long-range order. By contrast, the β-phase has a much greater root mean square roughness and long thin needle-like crystals are observed on the surface of the films. The morphology of the β-phase depends on the method of preparation and there are two distinct types, β1 and β2. The crystallites show a preferential orientation and alignment with respect to each other for growth at room temperature followed by annealing (β1), but are randomly oriented for films grown at elevated substrate temperatures (β2).

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 3673-3676

Thin film properties and surface morphology of metal free phthalocyanine films grown by organic molecular beam deposition

S. M. Bayliss, S. Heutz, G. Rumbles and T. S. Jones, Phys. Chem. Chem. Phys., 1999, 1, 3673 DOI: 10.1039/A904089G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements