Issue 9, 1998

Crystal polymorphism in pendimethalin herbicide is driven by electronic delocalization and changes in intramolecular hydrogen bonding. A crystallographic, spectroscopic and computational study

Abstract

Pendimethalin, N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine, is a potent herbicide that exists in two differently coloured polymorphic crystal habits. Triclinic pendimethalin I (P [1 with combining macron]) is the orange-coloured thermodynamically stable form, whereas monoclinic pendimethalin II (P 21/c) is a bright-yellow metastable form. The latter is normally produced first upon cooling the molten chemical, whereas the orange form is formed by a polymorphic phase transition which occurs slowly upon long term storage of the yellow form at temperatures below its melting point. Such phase transitions are rapidly revealed by calorimetry. The crystal structures of the polymorphs have been determined using single crystal X-ray diffraction. Solid state NMR spectroscopy, vibrational spectroscopy and UV–VIS spectroscopy were applied to further study the nature of the polymorphism in terms of intra- and inter-molecular properties. Solid state CP-MAS 13C NMR spectroscopy was shown to be the method of choice for quantitative analysis of polymorphic mixtures. The differences in spectral properties and crystal habits were investigated by computational methods which included molecular exciton, molecular orbital and molecular mechanics calculations. The dramatic colour change from yellow to orange-red during the polymorphic transition is discussed in terms of competing inter- and intra-molecular electronic effects. The driving force for the yellow (II) to orange (I) polymorphic transition is attributed to the change in the electronic delocalization achieved from shortening, strengthening, and partially straightening the ‘bent’ hydrogen bond between the secondary amino hydrogen and an oxygen of the 6′-nitro group. This results in increased overlap between the amino nitrogen’s lone pair and the π-electron orbitals of the aromatic ring. The calculated lattice stabilization energy due to this process is 4 to 5 kcal mol–1, and the relative lattice energies are consistent with the observed stabilities of the polymorphs. The slow kinetics of the polymorphic transition are largely governed by the steric interaction of the 1-ethylpropyl side chain and the two nitro groups. During crystallization, the more compact side chain conformation required to form the energetically more stable orange (I) polymorph appears to be more difficult to achieve than that required for the yellow (II) polymorph.

Article information

Article type
Paper

J. Chem. Soc., Perkin Trans. 2, 1998, 2061-2072

Crystal polymorphism in pendimethalin herbicide is driven by electronic delocalization and changes in intramolecular hydrogen bonding. A crystallographic, spectroscopic and computational study

G. W. Stockton, R. Godfrey, P. Hitchcock, R. Mendelsohn, P. C. Mowery, S. Rajan and A. F. Walker, J. Chem. Soc., Perkin Trans. 2, 1998, 2061 DOI: 10.1039/A705178F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements