Issue 12, 1998

LC-MS-MS to detect and identify four beta-agonists and quantify clenbuterol in liver†

Abstract

European legislation forbids the use of beta-agonists as growth-promoting substances in cattle raised for human consumption. However, the use of beta-agonists is allowed as a therapeutic treatment of tocolysis for female cattle during calving and of respiratory diseases and tocolysis for horses not raised for human consumption. A maximum residue limit (MRL) of 0.5 µg kg–1 for clenbuterol in the liver of cattle and horses is proposed by law. Residues of beta-agonists in liver are identified with LC-MS-MS. Using ion trap technology, it was possible to identify each analyte without the need to resolve completely the chromatographic peaks. For each analyte, specific fragment ion spectra were obtained. The coeluting or incompletely resolved peaks were separated mass spectrometrically. For tulobuterol, bromobuterol and mabuterol, qualitative information was obtained. All beta-agonists could be detected up to a concentration of 0.1 µg kg–1. For clenbuterol, a limited quantitative validation was performed. A working range was defined for which the method was applicable. Quantification was based on the integration of the response of the analytes in spiked blank liver samples. The mean recovery was 15%. The relative standard deviation (RSD) values at different concentrations were below the maximum allowed RSD. The limit of detection of clenbuterol was 0.11 µg kg–1. The limit of quantification was 0.21 µg kg–1. It was possible to quantify clenbuterol below one-half of the MRL. The advantage of this method is the ease of use of the mass spectrometric separation to qualify and quantify the presence of four beta-agonists in liver.

Article information

Article type
Paper

Analyst, 1998,123, 2701-2705

LC-MS-MS to detect and identify four beta-agonists and quantify clenbuterol in liver†

K. De Wasch, H. De Brabander and D. Courtheyn, Analyst, 1998, 123, 2701 DOI: 10.1039/A805039B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements