Issue 8, 1997

Depth-resolved Anaylsis of Multilayered Samples by Laser-induced Breakdown Spectrometry

Abstract

The capability of laser-induced breakdown spectrometry (LIBS) to resolve complex depth profiles is demonstrated. Electrolytically deposited brass samples were analyzed by monitoring the emission corresponding to Cr (357.8 nm), Ni (341.4 nm), Cu (327.4 nm) and Zn (334.5 nm). The nominal thickness of the layers was known, which permitted an estimate of the ablated mass in the range between 150 and 500 nm per pulse depending on the matrix and laser irradiance. Laser irradiance was varied by defocusing, and its effect on the depth-resolution of LIBS was tested. For comparison purposes, a commercial zinc-coated steel was also studied by following the Zn and Fe emission intensity depth profiles with a commercial glow-discharge optical emission spectrometry system to obtain information on the exact location of the Zn–Fe interface (12 µm). The ablation rate in terms of ablated mass per pulse was found to be at the ng per pulse level and depended on the laser pulse irradiance.

Article information

Article type
Paper

J. Anal. At. Spectrom., 1997,12, 859-862

Depth-resolved Anaylsis of Multilayered Samples by Laser-induced Breakdown Spectrometry

J. M. VADILLO and J. J. LASERNA, J. Anal. At. Spectrom., 1997, 12, 859 DOI: 10.1039/A607622J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements