Issue 12, 1995

Surface acoustic wave enzyme sensor applied to the kinetic assay of acid phosphatase

Abstract

The acid phosphatase hydrolysis of phenylphosphoric acid (at pH 5 and at 25 °C) with a new type of liquid-immersion surface acoustic wave enzyme sensor (SAW) is described. A mathematical model was derived to estimate the kinetic parameters and to determine the concentrations of enzyme and substrate. The inhibition of the product to the enzyme activity was involved in the model. The Michaelis constant was estimated to be 1.17 × 10–4 mol l–1. The recovery of the sensor system was 97.4–104.4%(n= 6). The effects of temperature and pH on the enzyme activity were discussed. The proposed model compared favourably with the linear method which indicated that the model gave more precise results.

Article information

Article type
Paper

Analyst, 1995,120, 2833-2836

Surface acoustic wave enzyme sensor applied to the kinetic assay of acid phosphatase

Q. Cai, R. Wang, L. Wu, L. Nie and S. Yao, Analyst, 1995, 120, 2833 DOI: 10.1039/AN9952002833

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements